354
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Regulation of neuronal repair and regeneration through inhibition of oligodendrocyte myelin glycoprotein (OMgp)

, , , , &
Pages 13936-13952 | Received 07 Nov 2020, Accepted 16 Oct 2021, Published online: 17 Nov 2021

References

  • Abdul Manap, A. S., Wei Tan, A. C., & Leong, W. H. (2019). Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in SH-SY5Y cells via computational molecular modeling and in vitro assay. Frontiers in Aging Neuroscience, 11. https://doi.org/10.3389/fnagi.2019.00206
  • Ao, C., Aap, C., Atrd, A., Jrg, D., Kbf, S., Pim, C., Jd, P., Dl, L., Mep, N., Gmpd, C., Krt, N., & Gsdb, V. (2015). Neuroprotective effects of piperine, an alkaloid from the Piper genus, on the Parkinson’s disease model in rats. Journal of Neurology and Therapeutics, 1(1), 1–8. https://doi.org/10.14312/2397-1304.2015-1
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382
  • Cole, G. M., Teter, B., & Frautschy, S. A. (2007).Neuroprotective effects of curcumin. In B. B. Aggarwal, Y. J. Surh, & S. Shishodia (Eds), The molecular targets and therapeutic uses of curcumin in health and disease (pp. 197–212). Springer.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gomes, A. O. C. V., Brito, M. V., Marques, R. A., Lima, L. B., Cavalcante, I. M., Vieira, T. D. N., Nunes, F. M., Lima, M. A. S., Uchôa, D. E., Lima, C. S., Silva, G. S., Candido-Júnior, J. R., Lima-Neto, P., Mattos, M. C., de Oliveira, F. L. S., Zanatta, G., & Oliveira, M. C. F. (2020). Multi-step bioconversion of annonalide by Fusarium oxysporum f. sp. tracheiphilum and theoretical investigation of the decarboxylase pathway. Journal of Molecular Structure, 1204, 127514. https://doi.org/10.1016/j.molstruc.2019.127514
  • Gupta, A., Mishra, S., Singh, S., & Mishra, S. (2017). Prevention of IcaA regulated poly N-acetyl glucosamine formation in Staphylococcus aureus biofilm through new-drug like inhibitors: In silico approach and MD simulation study. Microbial Pathogenesis, 110, 659–669. https://doi.org/10.1016/j.micpath.2017.05.025
  • Hewlings, S., & Kalman, D. (2017). Curcumin: A review of its effects on human health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092
  • Hua, S., Liu, J., Zhang, Y., Li, J., Zhang, X., Dong, L., Zhao, Y., & Fu, X. (2019). Piperine as a neuroprotective functional component in rats with cerebral ischemic injury. Food Science and Nutrition, 7(11), 3443–3451. https://doi.org/10.1002/fsn3.1185
  • Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 48, 339–351. https://doi.org/10.1007/400_2009_19
  • Lee, J. K., Geoffroy, C. G., Chan, A. F., Tolentino, K. E., Crawford, M. J., Leal, M. A., Kang, B., & Zheng, B. (2010). Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron, 66(5), 663–670. https://doi.org/10.1016/j.neuron.2010.05.002
  • Liu, J., Chen, M., Wang, X., Wang, Y., Duan, C., Gao, G., Lu, L., Wu, X., Wang, X., & Yang, H. (2016). Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model. Oncotarget, 7(38), 60823–60843. https://doi.org/10.18632/oncotarget.11661
  • McKerracher, L., & Rosen, K. M. (2015). MAG, myelin and overcoming growth inhibition in the CNS. Frontiers in Molecular Neuroscience, 8, 51. https://doi.org/10.3389/fnmol.2015.00051[PMC]
  • Pandey, P., Rane, J. S., & Chatterjee, A. (2020). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. Journal of Biomolecular Structure and Dynamics. 39, 1–11. https://doi.org/10.1080/07391102.2020.1796811
  • Parida, P. K., Paul, D., & Chakravorty, D. (2020). The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets . Phytotherapy Research, 34(12), 3420–3433. https://doi.org/10.1002/ptr.6868
  • Raavi, Mishra, S., & Singh, S. (2017). Prevention of OprD regulated antibiotic resistance in Pseudomonas aeruginosa biofilm. Microbial Pathogenesis, 112, 221–229. https://doi.org/10.1016/j.micpath.2017.08.007
  • Rane, J. S., Pandey, P., Chatterjee, A., Khan, R., Kumar, A., Prakash, A., & Ray, S. (2021). Targeting virus-host interaction by novel pyrimidine derivative: an in silico approach towards discovery of potential drug against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(15), 5768–5778. https://doi.org/10.1080/07391102.2020.1794969
  • Shaikh, J., Ankola, D. D., Beniwal, V., Singh, D., & Kumar, M. N. V. R. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences, 37(3-4), 223–230. https://doi.org/10.1016/j.ejps.2009.02.019
  • Siddiqui, A. M., Khazaei, M., & Fehlings, M. G. (2015). Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Progress in Brain Research, 218, 15–54.
  • Srikumar, P. S., Rohini, K., & Rajesh, P. K. (2014). Molecular dynamics simulations and principal component analysis on human laforin mutation W32G and W32G/K87A. The Protein Journal, 33(3), 289–295. https://doi.org/10.1007/s10930-014-9561-2
  • Stojanović-Radić, Z., Pejčić, M., Dimitrijević, M., Aleksić, A., Anil Kumar, N. V., Salehi, B., Cho, W. C., & Sharifi-Rad, J. (2019). Piperine-A major principle of black pepper: A review of its bioactivity and studies. Applied Sciences , 9(20), 4270. https://doi.org/10.3390/app9204270
  • Tong, J., Liu, W., Wang, X., Han, X., Hyrien, O., Samadani, U., Smith, D. H., & Huang, J. H. (2013). Inhibition of Nogo-66 receptor 1 enhances recovery of cognitive function after traumatic brain injury in mice. Journal of Neurotrauma, 30(4), 247–258. https://doi.org/10.1089/neu.2012.2493
  • Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool aid to perform end-state free energy calculations with GROMACS files. Journal of Chemical Theory and Computation, 17, 10.
  • Wang, L., Cai, X., Shi, M., Xue, L., Kuang, S., Xu, R., Qi, W., Li, Y., Ma, X., Zhang, R., Hong, F., Ye, H., & Chen, L. (2020). Identification and optimization of piperine analogues as neuroprotective agents for the treatment of Parkinson's disease via the activation of Nrf2/keap1 pathway. European Journal of Medicinal Chemistry, 199, 112385. https://doi.org/10.1016/j.ejmech.2020.112385
  • Wang, R., Han, J., Jiang, A., Huang, R., Fu, T., Wang, L., Zheng, Q., Li, W., & Li, J. (2019a). Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. International Journal of Pharmaceutics, 561, 9–18. https://doi.org/10.1016/j.ijpharm.2019.02.027
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019b). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wu, J., Yang, H., Qiu, Z., Zhang, Q., Ding, T., & Geng, D. (2010). Effect of combined treatment with methylprednisolone and nogo-a monoclonal antibody after rat spinal cord injury. The Journal of International Medical Research, 38(2), 570–582. https://doi.org/10.1177/147323001003800219
  • Yang, W., Chen, Y.-H., Liu, H., & Qu, H.-D. (2015). Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mouse model. International Journal of Molecular Medicine, 36(5), 1369–1376. https://doi.org/10.3892/ijmm.2015.2356

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.