262
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulation studies on binding of activator and inhibitor to Munc13-1 C1 in the presence of membrane

ORCID Icon & ORCID Icon
Pages 14160-14175 | Received 31 May 2021, Accepted 28 Oct 2021, Published online: 15 Nov 2021

References

  • Ananthanarayanan, B., Stahelin, R. V., Digman, M. A., & Cho, W. (2003). Activation mechanisms of conventional protein kinase C isoforms are determined by the ligand affinity and conformational flexibility of their C1 domains. Journal of Biological Chemistry, 278(47), 46886–46894. https://doi.org/10.1074/jbc.M307853200
  • Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K., & Broadie, K. (1999). Drosophila UNC-13 is essential for synaptic transmission. Nature Neuroscience, 2(11), 965–971.
  • Ashida, Y., Yanagita, R. C., Takahashi, C., Kawanami, Y., & Irie, K. (2016). Binding mode prediction of aplysiatoxin, a potent agonist of protein kinase C, through molecular simulation and structure–activity study on simplified analogs of the receptor-recognition domain. Bioorganic & Medicinal Chemistry, 24(18), 4218–4227. https://doi.org/10.1016/j.bmc.2016.07.011
  • Augustin, I., Betz, A., Herrmann, C., Jo, T., & Brose, N. (1999). Differential expression of two novel Munc13 proteins in rat brain. Biochemical Journal, 337(3), 363–371. https://doi.org/10.1042/bj3370363
  • Augustin, I., Rosenmund, C., Südhof, T. C., & Brose, N. (1999). Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature, 400(6743), 457–461.
  • Basu, J., Betz, A., Brose, N., & Rosenmund, C. (2007). Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(5), 1200–1210.
  • Basu, J., Shen, N., Dulubova, I., Lu, J., Guan, R., Guryev, O., Grishin, N. V., Rosenmund, C., & Rizo, J. (2005). A minimal domain responsible for Munc13 activity. Nature Structural & Molecular Biology, 12(11), 1017–1018. https://doi.org/10.1038/nsmb1001
  • Betz, A., Ashery, U., Rickmann, M., Augustin, I., Neher, E., Sudhof, T. C., Rettig, J., & Brose, N. (1998). Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron, 21(1), 123–136.
  • Betz, A., Okamoto, M., Benseler, F., & Brose, N. (1997). Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. Journal of Biological Chemistry, 272(4), 2520–2526. https://doi.org/10.1074/jbc.272.4.2520
  • Blanco, F. A., Czikora, A., Kedei, N., You, Y., Mitchell, G. A., Pany, S., Ghosh, A., Blumberg, P. M., & Das, J. (2019). Munc13 is a molecular target of bryostatin 1. Biochemistry, 58(27), 3016–3030.
  • Blumberg, P. M., Kedei, N., Lewin, N. E., Yang, D., Czifra, G., Pu, Y., Peach, M. L., & Marquez, V. E. (2008). Wealth of opportunity – The C1 domain as a target for drug development. Current Drug Targets, 9(8), 641–652.
  • Boije af Gennäs, G., Talman, V., Yli-Kauhaluoma, J., Tuominen, R. K., & Ekokoski, E. (2011). Current status and future prospects of C1 domain ligands as drug candidates. Current Topics in Medicinal Chemistry, 11(11), 1370–1392.
  • Bosco, D. A., & Landers, J. E. (2010). Genetic determinants of amyotrophic lateral sclerosis as therapeutic targets. CNS & Neurological Disorders Drug Targets, 9(6), 779–790.
  • Chen, Z., Cooper, B., Kalla, S., Varoqueaux, F., & Young, S. M. Jr. (2013). The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse. Journal of Neuroscience, 33(19), 8336–8351. https://doi.org/10.1523/JNEUROSCI.5128-12.2013
  • Chothia, C. (1975). Structural invariants in protein folding. Nature, 254(5498), 304–308.
  • Das, J., Kedei, N., Kelsey, J. S., You, Y., Pany, S., Mitchell, G. A., Lewin, N. E., & Blumberg, P. M. (2018). Critical role of Trp-588 of presynaptic Munc13-1 for ligand binding and membrane translocation. Biochemistry, 57(5), 732–741.
  • Das, J., & Rahman, G. M. (2014). C1 domains: Structure and ligand-binding properties. Chemical Reviews, 114(24), 12108–12131. https://doi.org/10.1021/cr300481j
  • Das, J., Xu, S., Pany, S., Guillory, A., Shah, V., & Roman, G. W. (2013). The pre-synaptic Munc13-1 binds alcohol and modulates alcohol self-administration in Drosophila. Journal of Neurochemistry, 126(6), 715–726.
  • Desikan, R., Maiti, P. K., & Ayappa, K. G. (2021). Predicting interfacial hot-spot residues that stabilize protein-protein interfaces in oligomeric membrane-toxin pores through hydrogen bonds and salt bridges. Journal of Biomolecular Structure & Dynamics, 39(1), 20–34.
  • Diekstra, F. P., Van Deerlin, V. M., van Swieten, J. C., Al-Chalabi, A., Ludolph, A. C., Weishaupt, J. H., Hardiman, O., Landers, J. E., Brown, R. H., Jr., van Es, M. A., Pasterkamp, R. J., Koppers, M., Andersen, P. M., Estrada, K., Rivadeneira, F., Hofman, A., Uitterlinden, A. G., van Damme, P., Melki, J., … Veldink, J. H. (2014). C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: A genome-wide meta-analysis. Annals of Neurology, 76(1), 120–133. https://doi.org/10.1002/ana.24198
  • Dries, D. R., Gallegos, L. L., & Newton, A. C. (2007). A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. The Journal of Biological Chemistry, 282(2), 826–830. https://doi.org/10.1074/jbc.C600268200
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Finsterer, J., & Burgunder, J. M. (2014). Recent progress in the genetics of motor neuron disease. European Journal of Medical Genetics, 57(2-3), 103–112. https://doi.org/10.1016/j.ejmg.2014.01.002
  • Geiger, M., Wrulich, O. A., Jenny, M., Schwaiger, W., Grunicke, H. H., & Uberall, F. (2003). Defining the human targets of phorbol ester and diacylglycerol. Current Opinion in Molecular Therapeutics, 5(6), 631–641.
  • Giorgione, J. R., Lin, J. H., McCammon, J. A., & Newton, A. C. (2006). Increased membrane affinity of the C1 domain of protein kinase Cdelta compensates for the lack of involvement of its C2 domain in membrane recruitment. The Journal of Biological Chemistry, 281(3), 1660–1669. https://doi.org/10.1074/jbc.M510251200
  • Goel, G., Harinder, P., Makkar, S., & Becker, G. (2007). Phorbol esters: Structure, biological activity, and toxicity in animals. International Journal of Toxicology, 26(4), 279–288. https://doi.org/10.1080/10915810701464641
  • Hartlage-Rübsamen, M., Waniek, A., & Roßner, S. (2013). Munc13 genotype regulates secretory amyloid precursor protein processing via postsynaptic glutamate receptors. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 31(1), 36–45.
  • Heron, C. E., & Feldman, S. R. (2021). Ingenol mebutate and the treatment of actinic keratosis. Journal of Drugs in Dermatology: JDD, 20(1), 102–104. https://doi.org/10.36849/JDD.5328
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447.
  • Ikin, A. F., Causevic, M., Pedrini, S., Benson, L. S., Buxbaum, J. D., Suzuki, T., Lovestone, S., Higashiyama, S., Mustelin, T., Burgoyne, R. D., & Gandy, S. (2007). Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding. Molecular Neurodegeneration, 2, 23. https://doi.org/10.1186/1750-1326-2-23
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Katti, S., & Igumenova, T. I. (2021). Structural insights into C1-ligand interactions: Filling the gaps by in silico methods. Advances in Biological Regulation, 79, 100784. https://doi.org/10.1016/j.jbior.2020.100784
  • Kazanietz, M., Krausz, K. W., & Blumberg, P. (1992). Differential irreversible insertion of protein kinase C into phospholipid vesicles by phorbol esters and related activators. Journal of Biological Chemistry, 267(29), 20878–20886. https://doi.org/10.1016/S0021-9258(19)36769-9
  • Keck, G. E., Poudel, Y. B., Rudra, A., Stephens, J. C., Kedei, N., Lewin, N. E., Peach, M. L., & Blumberg, P. M. (2010). Molecular modeling, total synthesis, and biological evaluations of C9-deoxy bryostatin 1. Angewandte Chemie (International ed. in English), 49(27), 4580–4584.
  • Kedei, N., Lundberg, D. J., Toth, A., Welburn, P., Garfield, S. H., & Blumberg, P. M. (2004). Characterization of the interaction of ingenol 3-angelate with protein kinase C. Cancer Research, 64(9), 3243–3255.
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kostovic, K., Jerkovic Gulin, S., Bukvic Mokos, Z., & Ceovic, R. (2017). Topical ingenol mebutate: A new treatment modality for multiple actinic keratoses and field cancerization. Anti-Cancer Agents in Medicinal Chemistry, 17(10), 1304–1311. https://doi.org/10.2174/1871520617666170213130523
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kwan, E. P., Xie, L., Sheu, L., Nolan, C. J., Prentki, M., Betz, A., Brose, N., & Gaisano, H. Y. (2006). Munc13-1 deficiency reduces insulin secretion and causes abnormal glucose tolerance. Diabetes, 55(5), 1421–1429.
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Lipstein, N., Sakaba, T., Cooper, B. H., Lin, K. H., Strenzke, N., Ashery, U., Rhee, J. S., Taschenberger, H., Neher, E., & Brose, N. (2013). Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling. Neuron, 79(1), 82–96.
  • Lipstein, N., Verhoeven-Duif, N. M., Michelassi, F. E., Calloway, N., van Hasselt, P. M., Pienkowska, K., van Haaften, G., van Haelst, M. M., van Empelen, R., Cuppen, I., van Teeseling, H. C., Evelein, A. M., Vorstman, J. A., Thoms, S., Jahn, O., Duran, K. J., Monroe, G. R., Ryan, T. A., Taschenberger, H., … Brose, N. (2017). Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. The Journal of Clinical Investigation, 127(3), 1005–1018.
  • Lomize, A. L., Pogozheva, I., & Mosberg, H. (2004). Quantification of helix–helix binding affinities in micelles and lipid bilayers. Protein Science: A Publication of the Protein Society, 13(10), 2600–2612.
  • Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., & Lomize, A. L. (2012). OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Research, 40(Database issue), D370–D376. https://doi.org/10.1093/nar/gkr703
  • Ma, C., Li, W., Xu, Y., & Rizo, J. (2011). Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nature Structural & Molecular Biology, 18(5), 542–549. https://doi.org/10.1038/nsmb.2047
  • Marsh, D. (2001). Polarity and permeation profiles in lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7777–7782. https://doi.org/10.1073/pnas.131023798
  • Nelson, T. J., & Alkon, D. L. (2009). Neuroprotective versus tumorigenic protein kinase C activators. Trends in Biochemical Sciences, 34(3), 136–145.
  • Newton, A. C. (2001). Protein kinase C: Structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chemical Reviews, 101(8), 2353–2364. https://doi.org/10.1021/cr0002801
  • Pany, S., Ghosh, A., You, Y., Nguyen, N., & Das, J. (2017). Resveratrol inhibits phorbol ester-induced membrane translocation of presynaptic Munc13-1. Biochimica et Biophysica Acta. General Subjects, 1861(11 Pt A), 2640–2651. https://doi.org/10.1016/j.bbagen.2017.07.006
  • Pervaiz, S. (2003). Resveratrol: From grapevines to mammalian biology. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 17(14), 1975–1985. https://doi.org/10.1096/fj.03-0168rev
  • Pettit, G. R., Herald, C. L., Doubek, D. L., Herald, D. L., Arnold, E., & Clardy, J. (1982). Isolation and structure of bryostatin 1. Journal of the American Chemical Society, 104(24), 6846–6848. https://doi.org/10.1021/ja00388a092
  • Quade, B., Camacho, M., Zhao, X., Orlando, M., Trimbuch, T., Xu, J., Li, W., Nicastro, D., Rosenmund, C., & Rizo, J. (2019). Membrane bridging by Munc13-1 is crucial for neurotransmitter release. eLife, 8, e42806. https://doi.org/10.7554/eLife.42806
  • Rahman, G. M., & Das, J. (2015). Modeling studies on the structural determinants for the DAG/phorbol ester binding to C1 domain. Journal of Biomolecular Structure & Dynamics, 33(1), 219–232.
  • Rahman, G. M., Shanker, S., Lewin, N. E., Kedei, N., Hill, C. S., Prasad, B. V., Blumberg, P. M., & Das, J. (2013). Identification of the activator-binding residues in the second cysteine-rich regulatory domain of protein kinase Ctheta (PKCtheta). Biochemical Journal, 451(1), 33–44. https://doi.org/10.1042/BJ20121307
  • Rege, S. D., Geetha, T., Griffin, G. D., Broderick, T. L., & Babu, J. R. (2014). Neuroprotective effects of resveratrol in Alzheimer disease pathology. Frontiers in Aging Neuroscience, 6, 218. https://doi.org/10.3389/fnagi.2014.00218
  • Richard, T., Pawlus, A. D., Iglésias, M. L., Pedrot, E., Waffo-Teguo, P., Mérillon, J. M., & Monti, J. P. (2011). Neuroprotective properties of resveratrol and derivatives. Annals of the New York Academy of Sciences, 1215, 103–108.
  • Richmond, J. E., Davis, W. S., & Jorgensen, E. M. (1999). UNC-13 is required for synaptic vesicle fusion in C. elegans. Nature Neuroscience, 2(11), 959–964. https://doi.org/10.1038/14755
  • Rizo, J., & Xu, J. (2015). The synaptic vesicle release machinery. Annual Review of Biophysics, 44, 339–367. https://doi.org/10.1146/annurev-biophys-060414-034057
  • Rossner, S. (2004). New players in old amyloid precursor protein-processing pathways. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 22(7), 467–474. https://doi.org/10.1016/j.ijdevneu.2004.07.004
  • Rossner, S., Fuchsbrunner, K., Lange-Dohna, C., Hartlage-Rübsamen, M., Bigl, V., Betz, A., Reim, K., & Brose, N. (2004). Munc13-1-mediated vesicle priming contributes to secretory amyloid precursor protein processing. The Journal of Biological Chemistry, 279(27), 27841–27844. https://doi.org/10.1074/jbc.C400122200
  • Ryckbosch, S. M., Wender, P. A., & Pande, V. S. (2017). Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes. Nature Communications, 8(1), 6. https://doi.org/10.1038/s41467-016-0015-8
  • Sassa, T., Harada, S., Ogawa, H., Rand, J. B., Maruyama, I. N., & Hosono, R. (1999). Regulation of the UNC-18-Caenorhabditis elegans syntaxin complex by UNC-13. The Journal of Neuroscience, 19 (12), 4772–4777. https://doi.org/10.1523/JNEUROSCI.19-12-04772.1999
  • Sharkey, N. A., & Blumberg, P. M. (1986). Comparison of the activity of phorbol 12-myristate 13-acetate and the diglyceride glycerol 1-myristate 2-acetate. Carcinogenesis, 7(4), 677–679.
  • Shen, N., Guryev, O., & Rizo, J. (2005). Intramolecular occlusion of the diacylglycerol-binding site in the C1 domain of munc13-1. Biochemistry, 44(4), 1089–1096. https://doi.org/10.1021/bi0476127
  • Shin, O.-H., Lu, J., Rhee, J.-S., Tomchick, D. R., Pang, Z. P., Wojcik, S. M., Camacho-Perez, M., Brose, N., Machius, M., Rizo, J., Rosenmund, C., & Südhof, T. C. (2010). Munc13 C 2 B domain is an activity-dependent Ca 2+ regulator of synaptic exocytosis. Nature Structural & Molecular Biology, 17(3), 280–288. https://doi.org/10.1038/nsmb.1758
  • Stewart, M. D., Cole, T. R., & Igumenova, T. I. (2014). Interfacial partitioning of a loop hinge residue contributes to diacylglycerol affinity of conserved region 1 domains. The Journal of Biological Chemistry, 289(40), 27653–27664.
  • Stewart, M. D., & Igumenova, T. I. (2017). Toggling of diacylglycerol affinity correlates with conformational plasticity in C1 domains. Biochemistry, 56(21), 2637–2640. https://doi.org/10.1021/acs.biochem.7b00228
  • Su, X. W., Broach, J. R., Connor, J. R., Gerhard, G. S., & Simmons, Z. (2014). Genetic heterogeneity of amyotrophic lateral sclerosis: Implications for clinical practice and research. Muscle Nerve, 49(6), 786–803. https://doi.org/10.1002/mus.24198
  • Varoqueaux, F., Sigler, A., Rhee, J. S., Brose, N., Enk, C., Reim, K., & Rosenmund, C. (2002). Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proceedings of the National Academy of Sciences U Sciences, 99(13), 9037–9042. https://doi.org/10.1073/pnas.122623799
  • Velasco-Bolom, J.-L., & Garduño-Juárez, R. (2021). Computational studies of membrane pore formation induced by Pin2. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1867640
  • Wang, Q. J., Fang, T.-W., Nacro, K., Marquez, V. E., Wang, S., & Blumberg, P. M. (2001). Role of hydrophobic residues in the C1b domain of protein kinase C delta on ligand and phospholipid interactions. The Journal of Biological Chemistry, 276(22), 19580–19587. https://doi.org/10.1074/jbc.M010089200
  • Wang, Y., Catana, F., Yang, Y., Roderick, R., & van Breemen, R. B. (2002). An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. Journal of Agricultural and Food Chemistry, 50(3), 431–435.
  • Wender, P. A., Cribbs, C. M., Koehler, K. F., Sharkey, N. A., Herald, C. L., Kamano, Y., Pettit, G. R., & Blumberg, P. M. (1988). Modeling of the bryostatins to the phorbol ester pharmacophore on protein kinase C. Proceedings of the National Academy of Sciences, 85(19), 7197–7201. https://doi.org/10.1073/pnas.85.19.7197
  • Xu, J., Camacho, M., Xu, Y., Esser, V., Liu, X., Trimbuch, T., Pan, Y.-Z., Ma, C., Tomchick, D. R., Rosenmund, C., & Rizo, J. (2017). Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN. eLife, 6, e22567. https://doi.org/10.7554/eLife.22567
  • Xu, S., Pany, S., Benny, K., Tarique, K., Al-Hatem, O., Gajewski, K., Leasure, J. L., Das, J., & Roman, G. (2018). Ethanol regulates presynaptic activity and sedation through presynaptic Unc13 proteins in Drosophila. eneuro, 5(3), ENEURO.0125-18.2018. https://doi.org/10.1523/ENEURO.0125-18.2018
  • Yang, Y., & Calakos, N. (2011). Munc13-1 is required for presynaptic long-term potentiation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(33), 12053–12057.
  • You, Y., Katti, S., Yu, B., Igumenova, T. I., & Das, J. (2021). Probing the diacylglycerol binding site of presynaptic Munc13-1. Biochemistry, 60(16), 1286–1298.
  • Zarebidaki, F., Camacho, M., Brockmann, M. M., Trimbuch, T., Herman, M. A., & Rosenmund, C. (2020). Disentangling the roles of RIM and Munc13 in synaptic vesicle localization and neurotransmission. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(49), 9372–9385.
  • Zhang, G., Kazanietz, M. G., Blumberg, P. M., & Hurley, J. H. (1995). Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell, 81(6), 917–924. https://doi.org/10.1016/0092-8674(95)90011-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.