384
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and dynamic simulation approach to decipher steroidal sapogenins (genus Trillium) derived agonists for glucocorticoid receptor

, &
Pages 55-66 | Received 23 Apr 2021, Accepted 03 Nov 2021, Published online: 26 Nov 2021

References

  • Cato, A. C. B., Schacke, H., Sterry, W., & Asadullah, K. (2004). The glucocorticoid receptor as a target for classic and novel anti-inflammatory therapy. Current Drug Target -Inflammation & Allergy, 3(4), 347–353. https://doi.org/10.2174/1568010042634479
  • Chinnasamy, S., Selvaraj, G., Kaushik, A. C., Kaliamurthi, S., Chandrabose, S., Singh, S. K., Thirugnanasambandam, R., Gu, K., & Wei, D. Q. (2020). Molecular docking and molecular dynamics simulation studies to identify potent AURKA inhibitors: Assessing the performance of density functional theory, MM-GBSA and mass action kinetics calculations. Journal of Biomolecular Structure & Dynamics, 38(14), 4325–4335.
  • De Bosscher, K., & Haegeman, G. (2009). Minireview: Latest perspectives on anti-inflammatory actions of glucocorticoids. Molecular Endocrinology (Baltimore, Md.), 23(3), 281–291.
  • Duma, D., Jewell, C. M., & Cidlowski, J. A. (2006). Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. The Journal of Steroid Biochemistry and Molecular Biology, 102(1–5), 11–21.
  • Fujioka, S., & Sakurai, A. (1997). Biosynthesis and metabolism of brassinosteroids. Physiologia Plantarum, 100(3), 710–715. https://doi.org/10.1111/j.1399-3054.1997.tb03078.x
  • Hartmann, M.-A. (1998). Plant sterols and the membrane environment. Trends in Plant Science, 3(5), 170–175.
  • Kashyap, K., & Kakkar, R. (2020). An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies. Journal of Biomolecular Structure & Dynamics, 38(1), 48–65.
  • Kauppi, B., Jakob, C., Färnegårdh, M., Yang, J., Ahola, H., Alarcon, M., Calles, K., Engström, O., Harlan, J., Muchmore, S., Ramqvist, A.-K., Thorell, S., Öhman, L., Greer, J., Gustafsson, J.-Å., Carlstedt-Duke, J., & Carlquist, M. (2003). The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. Journal of Biological Chemistry, 278(25), 22748–22754. https://doi.org/10.1074/jbc.M212711200
  • Liu, Y. L., Jang, S., Wang, S. M., Chen, C. H., & Li, F. Y. (2016). Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations. Journal of Biomolecular Structure & Dynamics, 34(6), 1214–1231.
  • Lu, N. Z., Wardell, S. E., Burnstein, K. L., Defranco, D., Fuller, P. J., Giguere, V., Hochberg, R. B., McKay, L., Renoir, J.-M., Weigel, N. L., Wilson, E. M., McDonnell, D. P., & Cidlowski, J. A. (2006). International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: Glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacological Reviews, 58(4), 782–797. https://doi.org/10.1124/pr.58.4.9
  • McMaster, A., & Ray, D. W. (2008). Drug insight: Selective agonists and antagonists of the glucocorticoid receptor. Nature Clinical Practice. Endocrinology & Metabolism, 4(2), 91–101. https://doi.org/10.1038/ncpendmet0745
  • Meijsing, S. H., Pufall, M. A., So, A. Y., Bates, D. L., Chen, L., & Yamamoto, K. R. (2009). DNA binding site sequence directs glucocorticoid receptor structure and activity. Science (New York, N.Y.), 324(5925), 407–410.
  • Patil, S. S., Bhatt, V., Singh, P. P., & Sharma, U. (2021a). Steroidal sapogenins from Trillium: Chemistry, synthesis, and opportunities in neuro-active steroids designing. Studies Natural Product Chemistry Elsevier, 68, 67–95. https://doi.org/10.1016/B978-0-12-819485-0.00004-9
  • Patil, S. S., Singh, P. P., Sharma, A., Padwad, Y. S., & Sharma, U. (2021b). Steroidal saponins of Trillium govanianum: Quality control, pharmacokinetic analysis, and anti-inflammatory activity. Biocatalysis and Agricultural Biotechnology, 35, 102071. https://doi.org/10.1016/j.bcab.2021.102071
  • Pratt, W. B., & Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental Biology and Medicine (Maywood, N.J.), 228(2), 111–133.
  • Qin, X.-J., Si, Y.-A., Chen, Y., Liu, H., Ni, W., Yan, H., Shu, T., Ji, Y.-H., & Liu, H.-Y. (2017). Cytotoxic steroidal saponins from Trillium kamtschaticum. Bioorganic & Medicinal Chemistry Letters, 27(11), 2267–2273. https://doi.org/10.1016/j.bmcl.2017.04.057
  • Rahman, S. U., Adhikari, A., Ismail, M., Raza Shah, M., Khurram, M., Shahid, M., Ali, F., Haseeb, A., Akbar, F., & Iriti, M. (2016). Beneficial effects of Trillium govanianum rhizomes in pain and inflammation. Molecules, 21(8), 1095. https://doi.org/10.3390/molecules21081095
  • Rahman, S. U., Ismail, M., Khurram, M., Ullah, I., Rabbi, F., & Iriti, M. (2017). Bioactive steroids and saponins of the genus Trillium. Molecules, 22(12), 2156. https://doi.org/10.3390/molecules22122156
  • Rathnayake, S., & Weerasinghe, S. (2018). Exploring the binding properties of agonists interacting with glucocorticoid receptor: An in silico approach. Journal of Molecular Modeling, 24(12), 1–16. https://doi.org/10.1007/s00894-018-3879-1
  • Rhen, T., & Cidlowski, J. A. (2005). Anti-inflammatory action of glucocorticoids-new mechanisms for old drugs. New England Journal of Medicine, 353(16), 1711–1723. https://doi.org/10.1056/NEJMra050541
  • Schäcke, H., Döcke, W. D., & Asadullah, K. (2002). Mechanisms involved in the side effects of glucocorticoids. Pharmacology & Therapeutics, 96(1), 23–43. https://doi.org/10.1016/s0163-7258(02)00297-8
  • Schrödinger Release 2020-3. (2020). Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY. Maestro-Desmond Interoperability Tools. Schrödinger.
  • Singh, P. P., Bora, P. S., Patil, S. S., Bhatt, V., & Sharma, U. (2020a). Qualitative and quantitative determination of steroidal saponins in Trillium govanianum by UHPLC‐QTOF‐MS/MS and UHPLC‐ELSD. Phytochemical Analysis, 31(6), 861–873. https://doi.org/10.1002/pca.2951
  • Singh, P. P., Patil, S. S., Bora, P. S., Bhatt, V., & Sharma, U. (2020b). Govanoside B, a new steroidal saponin from rhizomes of Trillium govanianum. Natural Product Research. https://doi.org/10.1080/14786419.2020.1761360
  • Tarkowská, D. (2019). Plants are capable of synthesizing animal steroid hormones. Molecules, 24(14), 2585. https://doi.org/10.3390/molecules24142585
  • Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3–19. https://doi.org/10.1016/S0031-9422(03)00300-5
  • Wink, M., & Van Wyk, B. E. (2008). Mind-Altering and Poisonous Plants of the World (Vol. 464). Timber Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.