136
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Studies on the synergistic action of methylglyoxal and peroxynitrite on structure and function of human serum albumin

, , , ORCID Icon, , & show all
Pages 67-80 | Received 06 Sep 2021, Accepted 03 Nov 2021, Published online: 28 Nov 2021

References

  • Ahmad, P., Islam, B., Allarakha, S., Rabbani, G., Dixit, K., Moinuddin, A. S., Khan, R. H., Siddiqui, S., & Ali, A. A. (2015). Preferential recognition of peroxynitrite-modified human serum albumin by circulating autoantibodies in cancer. International Journal of Biological Macromolecules, 72, 875–882. https://doi.org/10.1016/j.ijbiomac.2014.10.001
  • Ahmed, A., Shamsi, A., Khan, M. S., Husain, F. M., & Bano, B. (2018). Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. International Journal of Biological Macromolecules, 113, 269–276. https://doi.org/10.1016/j.ijbiomac.2018.02.137
  • Ahmed, N., Chakrabarty, A., Guengerich, F. P., & Chowdhury, G. (2020). Protective role of glutathione against peroxynitrite-mediated DNA damage during acute inflammation. Chemical Research in Toxicology, 33(10), 2668–2674. https://doi.org/10.1021/acs.chemrestox.0c00299
  • Ahmed, U., Thornalley, P. J., & Rabbani, N. (2014). Possible role of methylglyoxal and glyoxalase in arthritis. Biochemical Society Transactions, 42(2), 538–542. https://doi.org/10.1042/BST20140024
  • Amirtharaj, G. J., Natarajan, S. K., Mukhopadhya, A., Zachariah, U. G., Hegde, S. K., Kurian, G., Balasubramanian, K. A., & Ramachandran, A. (2008). Fatty acids influence binding of cobalt to serum albumin in patients with fatty liver. Biochimica et Biophysica Acta, 1782(5), 349–354. https://doi.org/10.1016/j.bbadis.2008.02.006
  • Arif, Z., Arfat, M. Y., Ahmad, J., Zaman, A., Islam, S. N., & Khan, M. A. (2015). Relevance of nitroxidation of albumin in rheumatoid arthritis: A biochemical and clinical study. Journal of Clinical & Cellular Immunology, 6(2), 1–8. http://doi.org/10.4172/2155-9899.1000324
  • Arif, Z., Arfat, M. Y., Neelofar, K., Ahmad, S., Badar, A., Khan, M. A., Zaman, A., & Ahmad, J. (2017). Effect of peroxynitrite on human serum albumin: A multi technique approach. Journal of Biomolecular Structure & Dynamics, 35(9), 2066–2034. https://doi.org/10.1080/07391102.2016.1206489
  • Arif, Z., Neelofar, K., Tarannum, A., Arfat, M. Y., Ahmad, S., Zaman, A., Khan, M. A., Badar, A., Islam, S. N., & Iqubal, M. A. (2018). SLE autoantibodies are well recognized by peroxynitrite-modified-HSA: Its implications in the pathogenesis of SLE. International Journal of Biological Macromolecules, 106, 1240–1249. https://doi.org/10.1016/j.ijbiomac.2017.08.122
  • Bar-Or, D., Curtis, G., Rao, N., Bampos, N., & Lau, E. (2001). Characterization of the Co2+ and Ni2+ binding amino-acid residues of the N-terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia. European Journal of Biochemistry, 268(1), 42–47. https://doi.org/10.1046/j.1432-1327.2001.01846.x
  • Bar-Or, D., Lau, E., & Winkler, J. V. (2000). A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia – a preliminary report. The Journal of Emergency Medicine, 19(4), 311–315. https://doi.org/10.1016/S0736-4679(00)00255-9
  • Beckman, J. S., Carson, M., Smith, C. D., & Koppenol, W. H. (1993). ALS, SOD and peroxynitrite. Nature, 364(6438), 584https://doi.org/10.1038/364584a0.
  • Beckmann, J. S., Ye, Y. Z., Anderson, P. G., Chen, J., Accavitti, M. A., Tarpey, M. M., & White, C. R. (1994). Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler, 375(2), 81–88. https://doi.org/10.1515/bchm3.1994.375.2.81
  • Campbell, E. L., & Colgan, S. P. (2019). Control and dysregulation of redox signalling in the gastrointestinal tract. Nature Reviews. Gastroenterology & Hepatology, 16(2), 106–120. https://doi.org/10.1038/s41575-018-0079-5
  • Carvalho, J. R., & Machado, V. (2018). New insights about albumin and liver disease. Annals of Hepatology, 17(4), 547–560. https://doi.org/10.5604/01.3001.0012.0916
  • Degendorfer, G., Chuang, C. Y., Kawasaki, H., Hammer, A., Malle, E., Yamakura, F., & Davies, M. J. (2016). Peroxynitrite-mediated oxidation of plasma fibronectin. Free Radical Biology & Medicine, 97, 602–615. https://doi.org/10.1016/j.freeradbiomed.2016.06.013
  • Ferrer-Sueta, G., Campolo, N., Trujillo, M., Bartesaghi, S., Carballal, S., Romero, N., Alvarez, B., & Radi, R. (2018). Biochemistry of peroxynitrite and protein tyrosine nitration. Chemical Reviews, 118(3), 1338–1408. https://doi.org/10.1021/acs.chemrev.7b00568.
  • Freitas, P. A. C., Ehlert, L. R., & Camargo, J. L. (2017). Glycated albumin: a potential biomarker in diabetes. Archives of Endocrinology and Metabolism, 61(3), 296–304. https://doi.org/10.1590/2359-3997000000272
  • Giudice, A. D., Dicko, C., Galantini, L., & Pavel, N. V. (2016). Structural Response of Human serum albumin to oxidation: Biological buffer to local formation of hypochlorite. The Journal of Physical Chemistry B, 120(48), 12261–12271. https://doi.org/10.1021/acs.jpcb.6b08601
  • Hafez, S., Abdelsaid, M., Fagan, S. C., & Ergul, A. (2018). Peroxynitrite-induced tyrosine nitration contributes to matrix metalloprotease-3 activation: Relevance to hyperglycemic ischemic brain injury and tissue plasminogen activator. Neurochemical Research, 43(2), 259–266. https://doi.org/10.1007/s11064-017-2411-9
  • Hanssen, N. M. J., Teraa, M., Scheijen, J. L. J. M., Waarenburg, M. V., Gremmels, H., Stehouwer, C. D. A., Verhaar, M. C., & Schalkwijk, C. G. (2021). Plasma methylglyoxal levels are associated with amputations and mortality in severe limb ischemia patients with and without diabetes. Diabetes Care, 44(1), 157–163. https://doi.org/10.2337/dc20-0581
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Islam, S., Mir, A. R., Raghav, A., Habib, S., Alam, K., & Ali, A. (2017). Glycation, Oxidation and Glycoxidation of IgG: A biophysical, biochemical, immunological and hematological study. Journal of Biomolecular Structure and Dynamics, 36(10), 2637–2653. https://doi.org/10.1080/07391102.2017.1365770
  • Jyoti, Mir, A. R., Habib, S., Siddiqui, S. S., Ali, A. & Moinuddin, (2016). Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes. International Journal of Biological Macromolecules, 86, 799–809. https://doi.org/10.1016/j.ijbiomac.2016.02.019
  • Kalapos, M. P. (1999). Methylglyoxal in living organisms: Chemistry, biochemistry, toxicology and biological implications. Toxicology Letters, 110(3), 145–175. https://doi.org/10.1016/S0378-4274(99)00160-5 .
  • Knani, I., Bouzidi, H., Zrour, S., Bergaoui, N., Hammami, M., & Kerkeni, M. (2018). Methylglyoxal: A relevant marker of disease activity in patients with rheumatoid arthritis. Disease Markers, 2018, 1–6. https://doi.org/10.1155/2018/8735926
  • Kolarz, B., Podgorska, D., & Podgorski, R. (2021). Insights of rheumatoid arthritis biomarkers. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 26(3), 185–195. https://doi.org/10.1080/1354750X.2020.1794043
  • Kramer, A. C., & Davies, M. J. (2019). Effect of methylglyoxal-induced glycation on the composition and structure of β-Lactoglobulin and α-Lactalbumin. Journal of Agricultural and Food Chemistry, 67(2), 699–710. https://doi.org/10.1021/acs.jafc.8b05809
  • Lee, H., Gu, M. J., Lee, J. Y., Lee, S., Kim, Y., & Ha, S. K. (2021). Methylglyoxal-Lysine Dimer, an advanced glycation end product, induces inflammation via interaction with RAGE in mesangial cells. Molecular Nutrition & Food Research, 65(13), e2000799. https://doi.org/10.1002/mnfr.202000799
  • Lee, K. M., Lee, C. Y., Zhang, G., Lyu, A., & Yue, K. K. M. (2019). Methylglyoxal activates osteoclasts through JNK pathway leading to osteoporosis. Chem Biol Interact, 308, 147–154. https://doi.org/10.1016/j.cbi.2019.05.026
  • Lo, T. W., Westwood, M. E., Mc Lellan, A. C., Selwood, T., & Thornalley, P. J. (1994). Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N-α-acetylarginine, N-α-alpha-acetylcysteine, and N-α-acetyl lysine, and bovine serum albumin. The Journal of Biological Chemistry, 269 269(51), 32299–32305.
  • Lu, H. S., Talent, J. M., & Gracy, R. W. (1981). Chemical modification of critical catalytic residues of lysine, arginine, and tryptophan in human glucose phosphate isomerase. Journal of Biological Chemistry, 256(2)1981), 785–792. https://doi.org/10.1016/S0021-9258(19)70045-3.
  • Lu, J., Stewart, A. J., Sadler, P. J., Pinheiro, T. J. T., & Blindauer, C. A. (2012). Allosteric inhibition of cobalt binding to albumin by fatty acids: Implications for the detection of myocardial ischemia. Journal of Medicinal Chemistry, 55(9), 4425–4430. https://doi.org/10.1021/jm3003137
  • Maciążek-Jurczyk, M., Janas, K., Pożycka, J., Szkudlarek, A., Rogóż, W., Owczarzy, A., & Kulig, K. (2020). Human serum albumin aggregation/fibrillation and its abilities to drugs binding. Molecules, 25(3), 618. https://doi.org/10.3390/molecules25030618
  • Macpherson, H. T. (1942). Modified procedures for the colorimetric estimation of arginine and histidine. The Biochemical Journal, 36(1/2), 59–63. https://doi.org/10.1042/bj0360059.
  • Maes, M., Galecki, P., Chang, Y. S., & Berk, M. (2011). A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(3), 676–692. https://doi.org/10.1016/j.pnpbp.2010.05.004
  • Mapp, P. I., Klocke, R., Walsh, D. A., Chana, J. K., Stevens, C. R., Gallagher, P. J., & Blake, D. R. (2001). Localization of 3-nitrotyrosine to rheumatoid and normal synovium. Arthritis & Rheumatology, 44(7), 1534–1539.
  • Margarson, M. P., & Soni, N. (1998). Serum albumin: touchstone or totem? Anaesthesia, 53(8), 789–803. https://doi.org/10.1046/j.1365-2044.1998.00438.x
  • McGarry, T., Monika, B., Veale, D. J., & Fearon, U. (2018). Hypoxia, oxidative stress and inflammation. Free Radical Biology & Medicine, 125, 15–24. https://doi.org/10.1016/j.freeradbiomed.2018.03.042
  • Mir, A. R., Moinuddin, Habib, S., Khan, F., Alam, K., & Ali, A. (2016). Structural changes in histone H2A by methylglyoxal generate highly immunogenic amorphous aggregates with implications in auto-immune response in cancer. Glycobiology, 26(2), 129–141. https://doi.org/10.1093/glycob/cwv082
  • Moloney, J. N., & Cotter, T. G. (2018). ROS signalling in the biology of cancer. Seminars in Cell & Developmental Biology, 80, 50–64. https://doi.org/10.1016/j.semcdb.2017.05.023
  • Mulligan, M. S., Hevel, J. M., Marletta, M. A., & Ward, P. A. (1991). Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proceedings of the National Academy of Sciences of the United States of America, 88(14), 6338–6342. https://doi.org/10.1073/pnas.88.14.6338
  • Nokin, M., Bellier, J., Durieux, F., Peulen, O., Rademaker, G., Gabriel, M., Monseur, C., Charloteaux, B., Verbeke, L., Laere, S. V., Roncarati, P., Herfs, M., Lambert, C., Scheijen, J., Schalkwijk, C., Colige, A., Caers, J., Delvenne, P., Turtoi, A., Castronovo, V., & Bellahcène, A. (2019). Methylglyoxal, a glycolysis metabolite, triggers metastasis through MEK/ERK/SMAD1 pathway activation in breast cancer. Breast Cancer Research : BCR, 21(1), 11. https://doi.org/10.1186/s13058-018-1095-7.
  • Onorato, J. M., Thorpe, S. R., & Baynes, J. W. (1998). Immunohistochemical and ELISA assays for biomarkers of oxidative stress in aging and disease. Annals of the New York Academy of Sciences, 854, 277–290. https://doi.org/10.1111/j.1749-6632.1998.tb09909.x
  • Pagliaro, P., & Penna, C. (2015). Redox signalling and cardioprotection: translatability and mechanism. British Journal of Pharmacology, 172(8), 1974–1995. https://doi.org/10.1111/bph.12975
  • Patel, V. B., Patel, N. K., Shah, M. M., & Mayank, B. (2009). Spectrophotometric determination of histidine hydrochloride monohydrate in pharmaceutical formulations. International Journal of PharmTech Research, 1(3), 852–856. .
  • Pietraforte, D., Salzano, A. M., Marino, G., & Minetti, M. (2003). Peroxynitrite-dependent modifications of tyrosine residues in hemoglobin. Formation of tyrosyl radical(s) and 3-nitrotyrosine. Amino Acids, 25(3-4), 341–350. https://doi.org/10.1007/s00726-003-0021-0
  • Qais, F. A., Alam, M., Naseem, I., & Ahmad, I. (2016). Understanding the mechanism of non-enzymatic glycation inhibition by cinnamic acid: an in vitro interaction and molecular modelling study. RSC Advances, 6(70), 65322–65337. https://doi.org/10.1039/C6RA12321J
  • Rabbani, G., & Ahn, S. N. (2019). Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. International Journal of Biological Macromolecules, 123, 979–990. https://doi.org/10.1016/j.ijbiomac.2018.11.053
  • Rabbani, G., Baig, M. H., Jan, A. F., Lee, E. J., Khan, M. V., Zaman, M., Farouk, A., Khan, R. H., & Choi, I. (2017). Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International Journal of Biological Macromolecules, 105(Pt 3), 1572–1580. https://doi.org/10.1016/j.ijbiomac.2017.04.051
  • Rabbani, N., & Thornalley, P. J. (2014). Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nature Protocols, 9(8), 1969–1979. https://doi.org/10.1038/nprot.2014.129
  • Radi, R. (2018). Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proceedings of the National Academy of Sciences of the United States of America, 115(23), 5839–5848. https://doi.org/10.1073/pnas.1804932115
  • Radi, R., Peluffo, G., Alvarez, M. N., Naviliat, M., & Cayota, A. (2001). Unraveling peroxynitrite formation in biological systems. Free Radical Biology & Medicine, 30(5), 463–488. https://doi.org/10.1016/S0891-5849(00)00373-7
  • Raghav, A., & Ahmad, J. (2018). Glycated albumin in chronic kidney disease: Pathophysiologic connections. Diabetes & Metabolic Syndrome, 12(3), 463–468. https://doi.org/10.1016/j.dsx.2018.01.002
  • Rebrin, I., Bregere, I. C., Gallaher, T. K., & Sohal, R. S. (2008). Detection and characterization of peroxynitrite-induced modifications of tyrosine, tryptophan, and methionine residues by tandem mass spectrometry. Methods in Enzymology, 441, 283–294. https://doi.org/10.1016/S0076-6879(08)01215-9.
  • Romero, N., Denicola, A., Souza, J. M., & Radi, R. (1999). Diffusion of peroxynitrite in the presence of carbon dioxide. Archives of Biochemistry and Biophysics, 368(1), 23–30. https://doi.org/10.1006/abbi.1999.1272
  • Semchyshyn, H. M. (2014). Reactive carbonyl species in vivo: Generation and dual biological effects. TheScientificWorldJournal, 2014, 417842. https://doi.org/10.1155/2014/417842
  • Sharifi-Rad, M., Kumar, N. V. A., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Fokou, P. V. T., Azzini, E., Peluso, I., Mishra, A. P., Nigam, M., Rayess, Y. E., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., … Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol, 11, 694. https://doi.org/10.3389/fphys.2020.00694
  • Siddiqui, S., Ameen, F., Kausar, T., Nayeem, S. M., Rehman, S., & Tabish, M. (2021). Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. Spectrochim Acta A Mol Biomol Spectrosc, 249, 119296. https://doi.org/10.1016/j.saa.2020.119296
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE – Ante chamber python parser interface. BMC Research Notes, 5(1), 367. http://doi.org/10.1186/1756-0500-5-367
  • Tarannum, A., Arif, Z., Alam, K. & Moinuddin, (2020). Glycation, nitro-oxidation and glyco-nitro-oxidation of human serum albumin: A physico-chemical study. Journal of Molecular Structure, 1210, 127991. https://doi.org/10.1016/j.molstruc.2020.127991
  • Tarannum, A., Arif, Z., Alam, K., Ahmad, S., & Uddin, M. (2019). Nitroxidized-albumin advanced glycation end product and rheumatoid arthritis. Archives of Rheumatology, 34(4), 461–475. https://doi.org/10.5606/ArchRheumatol.2019.7285
  • Thornalley, P. J. (2008). Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease. Drug Metabolism and Drug Interactions, 23 (1-2), 125–150. https://doi.org/10.1515/dmdi.2008.23.1-2.125.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.
  • Trujillo, M., Alvarez, B., Souza, J. M., Romero, N., Castro, L., Thomson, L., & Radi, R. (2010). Mechanisms and biological consequences of peroxynitrite-dependent protein oxidation and nitration. In L. J. Ignarro (Eds.), Biology and Pathobiology (pp. 61–102). Academic Press. https://doi.org/10.1016/lB978-0-12-373866-0.00003-4.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vasantha, S., Moorjani, M. N., & Sreenivasan, K. S. (1970). A modified colorimetric method based on McCarthy and paille procedure for estimation of methionine. Biochemical and Biophysical Research Communications, 41(3), 568–573. https://doi.org/10.1016/0006-291X(70)90050-1
  • Westwood, M. E., Argirov, O. K., Abordo, E. A., & Thornalley, P. J. (1997). Methylglyoxal-modified arginine residues–a signal for receptor-mediated endocytosis and degradation of proteins by monocytic THP-1 cells. Biochimica et Biophysica Acta, 1356(1), 84–94. https://doi.org/10.1016/S0167-4889(96)00154-1
  • White, C. R., Brock, T. A., Chang, L. Y., Crapo, J., Briscoe, P., Ku, D., Bradley, W. A., Gianturco, S. H., Gore, J., & Freeman, B. A. (1994). Superoxide and peroxynitrite in atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 91(3), 1044–1048. https://doi.org/10.1073/pnas.91.3.1044
  • Yang, L., Li, X., Wu, Z., Feng, C., Zhang, T., Dai, S., & Dong, Q. (2018). Inhibition of Methylglyoxal-Induced Histone H1 Nε-Carboxymethyllysine Formation by (+)-Catechin. Journal of Agricultural and Food Chemistry, 66(23), 5812–5820. https://doi.org/10.1021/acs.jafc.8b00826

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.