176
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural modulation of p53TAD1-TAZ2 complex upon mutations and post-translational modification

&
Pages 176-185 | Received 10 Aug 2021, Accepted 05 Nov 2021, Published online: 17 Nov 2021

References

  • Appella, E., & Anderson, C. W. (2001). Post-translational modifications and activation of p53 by genotoxic stresses. European Journal of Biochemistry, 268(10), 2764–2772. https://doi.org/10.1046/j.1432-1327.2001.02225.x
  • Bode, A. M., & Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nature Reviews. Cancer, 4(10), 793–805. https://doi.org/10.1038/nrc1455
  • Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. https://doi.org/10.1002/jcc.540040211
  • Brown, C. J., Srinivasan, D., Jun, L. H., Coomber, D., Verma, C. S., & Lane, D. P. (2008). The electrostatic surface of MDM2 modulates the specificity of its interaction with phosphorylated and unphosphorylated p53 peptides. Cell Cycle (Georgetown, Tex.), 7(5), 608–610. https://doi.org/10.4161/cc.7.5.5488
  • Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science (New York, N.Y.), 265(5170), 346–355. https://doi.org/10.1126/science.8023157
  • Cho, H. S., Liu, C. W., Damberger, F. F., Pelton, J. G., Nelson, H. C., & Wemmer, D. E. (1996). Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Science : A Publication of the Protein Society, 5(2), 262–269. https://doi.org/10.1002/pro.5560050210
  • Clore, G. M., Ernst, J., Clubb, R., Omichinski, J. G., Kennedy, W. M., Sakaguchi, K., Appella, E., & Gronenborn, A. M. (1995). Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nature Structural Biology, 2(4), 321–333. https://doi.org/10.1038/nsb0495-321
  • Darden, T., York, D., & Pedersen, L. (1993). Particle Mesh Ewald: An N.log(N) method for Ewald sums in large systems. Journal of Chemical Physics., 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology (Clifton, N.J.), 1084, 193–226.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald potential. Journal of Chemical Physics, 103(19), 8577–8592. https://doi.org/10.1063/1.470117
  • Feng, H., Jenkins, L. M., Durell, S. R., Hayashi, R., Mazur, S. J., Cherry, S., Tropea, J. E., Miller, M., Wlodawer, A., Appella, E., & Bai, Y. (2009). Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure (London, England : 1993), 17(2), 202–210. https://doi.org/10.1016/j.str.2008.12.009
  • Fields, S., & Jang, S. K. (1990). Presence of a potent transcription activating sequence in the p53 protein. Science (New York, N.Y.), 249(4972), 1046–1049. https://doi.org/10.1126/science.2144363
  • Ganguly, D., & Chen, J. (2009). Atomistic details of the disordered states of KID and pKID. Implications in coupled binding and folding. Journal of the American Chemical Society, 131(14), 5214–5223.
  • Ganguly, D., & Chen, J. (2015). Modulation of the disordered conformational ensembles of the p53 transactivation domain by cancer-associated mutations. PLoS Computational Biology, 11(4), e1004247. https://doi.org/10.1371/journal.pcbi.1004247
  • Green, D. R., & Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature, 458(7242), 1127–1130. https://doi.org/10.1038/nature07986
  • Hahn, S. (1993). Structure and function of acidic transcription activators. Cell, 72(4), 481–483. https://doi.org/10.1016/0092-8674(93)90064-W
  • Huang, J., & MacKerell, A. D. Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. Jr. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. 27, –38.
  • Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Isobe, M., Emanuel, B. S., Givol, D., Oren, M., & Croce, C. M. (1986). Localization of gene for human p53 tumour antigen to band 17p13. Nature, 320(6057), 84–85. https://doi.org/10.1038/320084a0
  • Ithuralde, R. E., & Turjanski, A. G. (2016). Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case. PLoS One, 11(1), e0144284. https://doi.org/10.1371/journal.pone.0144284
  • Jo, S., Cheng, X., Islam, S. M., Huang, L., Rui, H., Zhu, A., Lee, H. S., Qi, Y., Han, W., Vanommeslaeghe, K., & MacKerell, A. D., Jr. (2014). CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Advances in Protein Chemistry and Structural Biology, 96, 235–265.
  • Joerger, A. C., & Fersht, A. R. (2007). Structure-function-rescue: The diverse nature of common p53 cancer mutants. Oncogene, 26(15), 2226–2242. https://doi.org/10.1038/sj.onc.1210291
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865.
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374(2065), 20150202.
  • Kern, S. E., Kinzler, K. W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C., & Vogelstein, B. (1991). Identification of p53 as a sequence-specific DNA-binding protein. Science (New York, N.Y.), 252(5013), 1708–1711. https://doi.org/10.1126/science.2047879
  • Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., & Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science (New York, N.Y.), 274(5289), 948–953. https://doi.org/10.1126/science.274.5289.948
  • Lee, W., Harvey, T. S., Yin, Y., Yau, P., Litchfield, D., & Arrowsmith, C. H. (1994). Solution structure of the tetrameric minimum transforming domain of p53. Nature Structural Biology, 1(12), 877–890. https://doi.org/10.1038/nsb1294-877
  • Lee, H., Mok, K. H., Muhandiram, R., Park, K. H., Suk, J. E., Kim, D. H., Chang, J., Sung, Y. C., Choi, K. Y., & Han, K. H. (2000). Local structural elements in the mostly unstructured transcriptional activation domain of human p53. The Journal of Biological Chemistry, 275(38), 29426–29432. https://doi.org/10.1074/jbc.M003107200
  • Lee, H. J., Srinivasan, D., Coomber, D., Lane, D. P., & Verma, C. S. (2007). Modulation of the p53-MDM2 interaction by phosphorylation of Thr18: A computational study. Cell Cycle (Georgetown, Tex.), 6(21), 2604–2611. https://doi.org/10.4161/cc.6.21.4923
  • Matlashewski, G., Lamb, P., Pim, D., Peacock, J., Crawford, L., & Benchimol, S. (1984). Isolation and characterization of a human p53 cDNA clone: Expression of the human p53 gene. The EMBO Journal, 3(13), 3257–3262. https://doi.org/10.1002/j.1460-2075.1984.tb02287.x
  • McBride, O. W., Merry, D., & Givol, D. (1986). The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proceedings of the National Academy of Sciences of the United States of America, 83(1), 130–134. https://doi.org/10.1073/pnas.83.1.130
  • Michino, M., & Brooks, C. L. (2009). Predicting structurally conserved contacts for homologous proteins using sequence conservation filters. Proteins, 77(2), 448–453. https://doi.org/10.1002/prot.22456
  • Nikolova, P. V., Wong, K. B., DeDecker, B., Henckel, J., & Fersht, A. R. (2000). Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. The EMBO Journal, 19(3), 370–378. https://doi.org/10.1093/emboj/19.3.370
  • Ozaki, T., & Nakagawara, A. (2011). Role of p53 in cell death and human cancers. Cancers, 3(1), 994–1013. https://doi.org/10.3390/cancers3010994
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Riley, T., Sontag, E., Chen, P., & Levine, A. (2008). Transcriptional control of human p53-regulated genes. Nature Reviews. Molecular Cell Biology, 9(5), 402–412. https://doi.org/10.1038/nrm2395
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Romer, L., Klein, C., Dehner, A., Kessler, H., & Buchner, J. (2006). p53-a natural cancer killer: Structural insights and therapeutic concepts. Angewandte Chemie (International ed. in English), 45(39), 6440–6460. https://doi.org/10.1002/anie.200600611
  • Sakaguchi, K., Saito, S., Higashimoto, Y., Roy, S., Anderson, C. W., & Appella, E. (2000). Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. The Journal of Biological Chemistry, 275(13), 9278–9283. https://doi.org/10.1074/jbc.275.13.9278
  • Sigler, P. B. (1988). Transcriptional activation. Acid blobs and negative noodles. Nature, 333(6170), 210–212. https://doi.org/10.1038/333210a0
  • Uesugi, M., & Verdine, G. L. (1999). The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 14801–14806. https://doi.org/10.1073/pnas.96.26.14801
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2008). Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annual Review of Biophysics, 37, 215–246. https://doi.org/10.1146/annurev.biophys.37.032807.125924
  • Wells, M., Tidow, H., Rutherford, T. J., Markwick, P., Jensen, M. R., Mylonas, E., Svergun, D. I., Blackledge, M., & Fersht, A. R. (2008). Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5762–5767. https://doi.org/10.1073/pnas.0801353105
  • Yee, K. S., & Vousden, K. H. (2005). Complicating the complexity of p53. Carcinogenesis, 26(8), 1317–1322. https://doi.org/10.1093/carcin/bgi122
  • Zilfou, J. T., & Lowe, S. W. (2009). Tumor suppressive functions of p53. Cold Spring Harbor Perspectives in Biology , 1(5), a001883–a001883. https://doi.org/10.1101/cshperspect.a001883

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.