575
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of potential Aurora-A kinase inhibitors by 3D QSAR pharmacophore modeling, virtual screening, docking, and MD simulation studies

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 125-146 | Received 12 Feb 2021, Accepted 04 Nov 2021, Published online: 23 Nov 2021

References

  • Abbas, N., Matada, G. S., Dhiwar, P. S., Patel, S., & Devasahayam, G. (2021). Fused and substituted pyrimidine derivatives as a profound anticancer agent. Anti-Cancer Agents in Medicinal Chemistry, 21(7), 861–893. https://doi.org/10.2174/1871520620666200721104431
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Araki, K., Nozaki, K., Ueba, T., Tatsuka, M., & Hashimoto, N. (2004). High expression of aurora-B/aurora and Ipll-like midbody-associated protein (AIM-1) in astrocytomas. Journal of Neuro-Oncology, 67(1–2), 53–64. https://doi.org/10.1023/B:NEON.0000021784.33421.05
  • Bavetsias, V., & Linardopoulos, S. (2015). Aurora kinase inhibitors: Current status and outlook. Frontiers in Oncology, 5, 278.
  • Belanger, D. B., Curran, P. J., Hruza, A., Voigt, J., Meng, Z., Mandal, A. K., Siddiqui, M. A., Basso, A. D., & Gray, K. (2010). Discovery of imidazo[1,2-a]pyrazine-based Aurora kinase inhibitors . Bioorganic & Medicinal Chemistry Letters, 20(17), 5170–5174. https://doi.org/10.1016/j.bmcl.2010.07.008
  • Bernard, M., Sanseau, P., Henry, C., Couturier, A., & Prigent, C. (1998). Cloning of STK13, a third human protein kinase related to Drosophila aurora and budding yeast Ipl1 that maps on chromosome 19q13.3-ter. Genomics, 53(3), 406–409. https://doi.org/10.1006/geno.1998.5522
  • Binch, H., Hashimoto, M., Iwama, T., Kawanishi, N., Mortimore, M., Ohkubo, M., Sunami, T., inventors; MSD KK, Vertex Pharmaceuticals Inc, assignee. (2013, July). Aminopyridine derivatives having Aurora A selective inhibitory action (United States Patent US 8,492,397).
  • Blanchard, S., William, A. D., Lee, A. C.-H., Poulsen, A., Teo, E. L., Deng, W., Tu, N., Tan, E., Goh, K. L., Ong, W. C., Ng, C. P., Goh, K. C., Bonday, Z., & Sun, E. T. (2010). Synthesis and evaluation of alkenyl indazoles as selective Aurora kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 20(8), 2443–2447. https://doi.org/10.1016/j.bmcl.2010.03.018
  • Bouloc, N., Large, J. M., Kosmopoulou, M., Sun, C., Faisal, A., Matteucci, M., Reynisson, J., Brown, N., Atrash, B., Blagg, J., McDonald, E., Linardopoulos, S., Bayliss, R., & Bavetsias, V. (2010). Structure-based design of imidazo[1,2-a]pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells . Bioorganic & Medicinal Chemistry Letters, 20(20), 5988–5993. https://doi.org/10.1016/j.bmcl.2010.08.091
  • Carmena, M., & Earnshaw, W. C. (2003). The cellular geography of aurora kinases. Nature Reviews. Molecular Cell Biology, 4(11), 842–854. https://doi.org/10.1038/nrm1245
  • Carpinelli, P., & Moll, J. (2008). Aurora kinase inhibitors: Identification and preclinical validation of their biomarkers. Expert Opinion on Therapeutic Targets, 12(1), 69–80. https://doi.org/10.1517/14728222.12.1.69
  • Chang, C. F., Lin, W. H., Ke, Y. Y., Lin, Y. S., Wang, W. C., Chen, C. H., Kuo, P. C., Hsu, J. T., Uang, B. J., & Hsieh, H. P. (2016). Discovery of novel inhibitors of Aurora kinases with indazole scaffold: In silico fragment-based and knowledge-based drug design. European Journal of Medicinal Chemistry, 124, 186–199. https://doi.org/10.1016/j.ejmech.2016.08.026
  • Cheung, C. H. A., Sarvagalla, S., Lee, J. Y.-C., Huang, Y.-C., & Coumar, M. S. (2014). Aurora kinase inhibitor patents and agents in clinical testing: An update (2011–2013). Expert Opinion on Therapeutic Patents, 24(9), 1021–1038. https://doi.org/10.1517/13543776.2014.931374
  • Chieffi, P., Troncone, G., Caleo, A., Libertini, S., Linardopoulos, S., Tramontano, D., & Portella, G. (2004). Aurora B expression in normal testis and seminomas. The Journal of Endocrinology, 181(2), 263–270. https://doi.org/10.1677/joe.0.1810263
  • D'Alise, A. M., Amabile, G., Iovino, M., Di Giorgio, F. P., Bartiromo, M., Sessa, F., Villa, F., Musacchio, A., & Cortese, R. (2008). Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells. Molecular Cancer Therapeutics, 7(5), 1140–1149. https://doi.org/10.1158/1535-7163.MCT-07-2051
  • Deng, X.-Q., Wang, H.-Y., Zhao, Y.-L., Xiang, M.-L., Jiang, P.-D., Cao, Z.-X., Zheng, Y.-Z., Luo, S.-D., Yu, L.-T., Wei, Y.-Q., & Yang, S.-Y. (2008). Pharmacophore modelling and virtual screening for identification of new Aurora-A kinase inhibitors . Chemical Biology & Drug Design, 71(6), 533–539. https://doi.org/10.1111/j.1747-0285.2008.00663.x
  • Discovery Studio 3.5. (2009). Accelrys: 9685 Scranton Road, San Diego, CA 92121, USA.
  • Dong, J., Zhang, Q., Wang, Z., Huang, G., & Li, S. (2018). Recent advances in the development of indazole-based anticancer agents. ChemMedChem, 13(15), 1490–1507. https://doi.org/10.1002/cmdc.201800253
  • Eric, S., Ke, S., Barata, T., Solmajer, T., Stankovic, J. A., Juranic, Z., Savic, V., & Zloh, M. (2012). Target fishing and docking studies of the novel derivatives of aryl-aminopyridines with potential anticancer activity. Bioorganic & Medicinal Chemistry, 20(17), 5220–5228. https://doi.org/10.1016/j.bmc.2012.06.051
  • Fancelli, D., Moll, J., Varasi, M., Bravo, R., Artico, R., Berta, D., Bindi, S., Cameron, A., Candiani, I., Cappella, P., Carpinelli, P., Croci, W., Forte, B., Giorgini, M. L., Klapwijk, J., Marsiglio, A., Pesenti, E., Rocchetti, M., Roletto, F., … Vianello, P., Jr. (2006). 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: Identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. Journal of Medicinal Chemistry, 49(24), 7247–7251. https://doi.org/10.1021/jm060897w
  • Fischer, R. (1966). The principle of experimentation, illustrated by a psycho-physical experiment. The design of experiments, 1-256. New York, USA: Hafner Publishing Co.
  • Fu, J., Bian, M., Jiang, Q., & Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Molecular Cancer Research: MCR, 5(1), 1–10. https://doi.org/10.1158/1541-7786.MCR-06-0208
  • Ghasemi, F., Zomorodipour, A., Karkhane, A. A., & Khorramizadeh, M. R. (2016). In silico designing of hyper-glycosylated analogs for the human coagulation factor IX. Journal of Molecular Graphics & Modelling, 68, 39–47. https://doi.org/10.1016/j.jmgm.2016.05.011
  • Ghorab, M. M., Al-Dhfyan, A., Al-Dosari, M. S., El-Gazzar, M. G., & AlSaid, M. S. (2014). Antiproliferative activity of novel thiophene and thienopyrimidine derivatives. Drug Research, 64(6), 313–320.
  • Giet, R., & Prigent, C. (1999). Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. Journal of Cell Science, 112(21), 3591–3601. https://doi.org/10.1242/jcs.112.21.3591
  • Giet, R., Petretti, C., & Prigent, C. (2005). Aurora kinases, aneuploidy and cancer, a coincidence or a real link. Trends in Cell Biology, 15(5), 241–250. https://doi.org/10.1016/j.tcb.2005.03.004
  • Girdler, F., Gascoigne, K. E., Eyers, P. A., Hartmuth, S., Crafter, C., Foote, K. M., Keen, N. J., & Taylor, S. S. (2006). Validating aurora B as an anti-cancer drug target. Journal of Cell Science, 119(Pt 17), 3664–3675. https://doi.org/10.1242/jcs.03145
  • Gritsko, T. M., Coppola, D., Paciga, J. E., Yang, L., Sun, M., Shelley, S. A., Fiorica, J. V., Nicosia, S. V., & Cheng, J. Q. (2003). Activation and overexpression of centrosome kinase BTAK/aurora-A in human ovarian cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 9(4), 1420–1426.
  • Gustafson, W. C., Meyerowitz, J. G., Nekritz, E. A., Chen, J., Benes, C., Charron, E., Simonds, E. F., Seeger, R., Matthay, K. K., Hertz, N. T., Eilers, M., Shokat, K. M., & Weiss, W. A. (2014). Drugging MYCN through an allosteric transition in aurora kinase A. Cancer Cell, 26(3), 414–427. https://doi.org/10.1016/j.ccr.2014.07.015
  • Harrington, E. A., Bebbington, D., Moore, J., Rasmussen, R. K., Ajose-Adeogun, A. O., Nakayama, T., Graham, J. A., Demur, C., Hercend, T., Diu-Hercend, A., Su, M., Golec, J. M. C., & Miller, K. M. (2004). VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Medicine, 10(3), 262–267. https://doi.org/10.1038/nm1003
  • Heron, N. M., Anderson, M., Blowers, D. P., Breed, J., Eden, J. M., Green, S., Hill, G. B., Johnson, T., Jung, F. H., McMiken, H. H. J., Mortlock, A. A., Pannifer, A. D., Pauptit, R. A., Pink, J., Roberts, N. J., & Rowsell, S. (2006). SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 16(5), 1320–1323. https://doi.org/10.1016/j.bmcl.2005.11.053
  • ChEMBL Database. 2019. https://www.ebi.ac.uk/chembl/
  • Iwasawa, Y., Kato, T., Kawanishi, N., Masutani, K., Mita, T., Nonoshita, K., & Ohkubo, M., inventors; MSD KK, assignee. (2011, March). Aminopyridine derivatives having aurora A selective inhibitory action (United States Patent US 7,915,263). https://doi.org/10.1038/nm1003
  • Joshi, A. J., Gadhwal, M. K., & Joshi, U. J. (2014). A combined approach based on 3D pharmacophore and docking for identification of new aurora A kinase inhibitors. Medicinal Chemistry Research, 23(3), 1414–1436. https://doi.org/10.1007/s00044-013-0747-5
  • Joshi, T., Joshi, T., Sharma, P., Chandra, S., & Pande, V. (2020). Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase. Journal of Biomolecular Structure and Dynamics, 29, 1–8.
  • Kaestner, P., Stolz, A., & Bastians, H. (2009). Determinants for the efficiency of anticancer drugs targeting either aurora-A or aurora-B kinases in human colon carcinoma cells. Molecular Cancer Therapeutics, 8(7), 2046–2056. https://doi.org/10.1158/1535-7163.MCT-09-0323
  • Kato, T., Kawanishi, N., Mita, T., Nonoshita, K., & Ohkubo, M., inventors; MSD KK, assignee. (2013, August). Aminopyridine derivatives having aurora a selective inhibitory action (United States Patent US 8,519,136). https://patents.google.com/patent/US8492397B2/en
  • Ke, Y.-Y., Chang, C.-P., Lin, W.-H., Tsai, C.-H., Chiu, I.-C., Wang, W.-P., Wang, P.-C., Chen, P.-Y., Lin, W.-H., Chang, C.-F., Kuo, P.-C., Song, J.-S., Shih, C., Hsieh, H.-P., & Chi, Y.-H. (2018). Design and synthesis of BPR1K653 derivatives targeting the back pocket of Aurora kinases for selective isoform inhibition. European Journal of Medicinal Chemistry, 151, 533–545. https://doi.org/10.1016/j.ejmech.2018.03.064
  • Kimura, M., Matsuda, Y., Yoshioka, T., & Okano, Y. (1999). Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. The Journal of Biological Chemistry, 274(11), 7334–7340. https://doi.org/10.1074/jbc.274.11.7334
  • Kollareddy, M., Zheleva, D., Dzubak, P., Brahmkshatriya, P. S., Lepsik, M., & Hajduch, M. (2012). Aurora kinase inhibitors: Progress towards the clinic. Investigational New Drugs, 30(6), 2411–2432. https://doi.org/10.1007/s10637-012-9798-6
  • Kurokawa, C., Geekiyanage, H., Allen, C., Iankov, I., Schroeder, M., Carlson, B., Bakken, K., Sarkaria, J., Ecsedy, J. A., D'Assoro, A., Friday, B., & Galanis, E. (2017). Alisertib demonstrates significant antitumor activity in bevacizumab resistant, patient derived orthotopic models of glioblastoma. Journal of Neuro-Oncology, 131(1), 41–48. https://doi.org/10.1007/s11060-016-2285-8
  • Lawrence, H. R., Martin, M. P., Luo, Y., Pireddu, R., Yang, H., Gevariya, H., Ozcan, S., Zhu, J.-Y., Kendig, R., Rodriguez, M., Elias, R., Cheng, J. Q., Sebti, S. M., Schonbrunn, E., & Lawrence, N. J. (2012). Development of o-chlorophenyl substituted pyrimidines as exceptionally potent Aurora kinase inhibitors. Journal of Medicinal Chemistry, 55(17), 7392–7416. https://doi.org/10.1021/jm300334d
  • Le Brazidec, J.-Y., Pasis, A., Tam, B., Boykin, C., Wang, D., Marcotte, D. J., Claassen, G., Chong, J.-H., Chao, J., Fan, J., Nguyen, K., Silvian, L., Ling, L., Zhang, L., Choi, M., Teng, M., Pathan, N., Zhao, S., Li, T., & Taveras, A. (2012). Structure-based design of 2,6,7-trisubstituted-7H-pyrrolo[2,3-d]pyrimidines as Aurora kinases inhibitors . Bioorganic & Medicinal Chemistry Letters, 22(12), 4033–4037. https://doi.org/10.1016/j.bmcl.2012.04.085
  • Leng, Y., Lu, T., Yuan, H. L., Liu, H. C., Lu, S., Zhang, W. W., Jiang, Y. L., & Chen, Y. D. (2012). QSAR studies on imidazopyrazine derivatives as Aurora A kinase inhibitors. SAR and QSAR in Environmental Research, 23(7–8), 705–730. https://doi.org/10.1080/1062936X.2012.719541
  • Lens, S. M. A., Voest, E. E., & Medema, R. H. (2010). Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nature Reviews. Cancer, 10(12), 825–841. https://doi.org/10.1038/nrc2964
  • Lew, W., Baskaran, S., Oslob, JD., Yoburn, J. C., & Zhong, M., inventors; Sunesis Pharmaceuticals Inc, assignee. (2009, October). Thienopyrimidines useful as Aurora kinase inhibitors (United States Patent US 7,601,725). https://europepmc.org/article/med/18678489
  • Li, J., Hu, H., Lang, Q., Zhang, H., Huang, Q., Wu, Y., & Yu, L. (2013). A thienopyrimidine derivative induces growth inhibition and apoptosis in human cancer cell lines via inhibiting Aurora B kinase activity. European Journal of Medicinal Chemistry, 65, 151–157. https://doi.org/10.1016/j.ejmech.2013.04.058
  • Luo, Y., Deng, Y.-Q., Wang, J., Long, Z.-J., Tu, Z.-C., Peng, W., Zhang, J.-Q., Liu, Q., & Lu, G. (2014). Design, synthesis and bioevaluation of N-trisubstituted pyrimidine derivatives as potent aurora A kinase inhibitors. European Journal of Medicinal Chemistry, 78, 65–71. https://doi.org/10.1016/j.ejmech.2014.03.027
  • Matada, G. S. P., Dhiwar, P. S., Abbas, N., Singh, E., Ghara, A., Das, A., & Bhargava, S. V. (2021). Molecular docking and molecular dynamic studies: Screening of phytochemicals against EGFR, HER2, estrogen and NF-KB receptors for their potential use in breast cancer. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1877823
  • McClellan, W. J., Dai, Y., Abad-Zapatero, C., Albert, D. H., Bouska, J. J., Glaser, K. B., Magoc, T. J., Marcotte, P. A., Osterling, D. J., Stewart, K. D., Davidsen, S. K., & Michaelides, M. R. (2011). Discovery of potent and selective thienopyrimidine inhibitors of Aurora kinases. Bioorganic & Medicinal Chemistry Letters, 21(18), 5620–5624. https://doi.org/10.1016/j.bmcl.2011.06.041
  • Morshed, M. N., Cho, Y. S., Seo, S. H., Han, K.-C., Yang, E. G., & Pae, A. N. (2011). Computational approach to the identification of novel Aurora-A inhibitors. Bioorganic & Medicinal Chemistry, 19(2), 907–916. https://doi.org/10.1016/j.bmc.2010.11.064
  • Oslob, J. D., Romanowski, M. J., Allen, D. A., Baskaran, S., Bui, M., Elling, R. A., Flanagan, W. M., Fung, A. D., Hanan, E. J., Harris, S., Heumann, S. A., Hoch, U., Jacobs, J. W., Lam, J., Lawrence, C. E., McDowell, R. S., Nannini, M. A., Shen, W., Silverman, J. A., … Lew, W. (2008). Discovery of a potent and selective Aurora kinase inhibitor. Bioorganic & Medicinal Chemistry Letters, 18(17), 4880–4884. https://doi.org/10.1016/j.bmcl.2008.07.073
  • Otto, T., Horn, S., Brockmann, M., Eilers, U., Schüttrumpf, L., Popov, N., Kenney, A. M., Schulte, J. H., Beijersbergen, R., Christiansen, H., Berwanger, B., & Eilers, M. (2009). Stabilization of N-Myc is a critical function of aurora A in human neuroblastoma. Cancer Cell, 15(1), 67–78. https://doi.org/10.1016/j.ccr.2008.12.005
  • Pan, W., Liu, H., Xu, Y.-J., Chen, X., Kim, K. H., Milligan, D. L., Columbus, J., Hadari, Y. R., Kussie, P., Wong, W. C., & Labelle, M. (2005). Pyrimido-oxazepine as a versatile template for the development of inhibitors of specific kinases. Bioorganic & Medicinal Chemistry Letters, 15(24), 5474–5477. https://doi.org/10.1016/j.bmcl.2005.08.098
  • Pollard, J. R., & Mortimore, M. (2009). Discovery and development of Aurora kinase inhibitors as anticancer agents. Journal of Medicinal Chemistry, 52(9), 2629–2651. https://doi.org/10.1021/jm8012129
  • Qi, G., Liu, J., Mi, S., Tsunematsu, T., Jin, S., Shao, W., Liu, T., Ishimaru, N., Tang, B., & Kudo, Y. (2018). Aurora kinase inhibitors in head and neck cancer. Current Topics in Medicinal Chemistry, 18(3), 199–213. https://doi.org/10.2174/1568026618666180112163741
  • Reichardt, W., Jung, V., Brunner, C., Klein, A., Wemmert, S., Romeike, B. F. M., Zang, K. D., & Urbschat, S. (2003). The putative serine/threonine kinase gene STK15 on chromosome 20q13.2 is amplified in human gliomas. Oncology Reports, 10(5), 1275–1279.
  • Sardon, T., Cottin, T., Xu, J., Giannis, A., & Vernos, I. (2009). Development and biological evaluation of a novel aurora A kinase inhibitor. Chembiochem: A European Journal of Chemical Biology, 10(3), 464–478. https://doi.org/10.1002/cbic.200800600
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Sells, T. B., Chau, R., Ecsedy, J. A., Gershman, R. E., Hoar, K., Huck, J., Janowick, D. A., Kadambi, V. J., LeRoy, P. J., Stirling, M., Stroud, S. G., Vos, T. J., Weatherhead, G. S., Wysong, D. R., Zhang, M., Balani, S. K., Bolen, J. B., Manfredi, M. G., & Claiborne, C. F. (2015). MLN8054 and alisertib (MLN8237): Discovery of selective oral aurora a inhibitors. ACS Medicinal Chemistry Letters, 6(6), 630–634. https://doi.org/10.1021/ml500409n
  • Seymour, J. F., Kim, D. W., & Rubin, E. (2014). A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Cancer Journal, 4, 238.
  • Shahbaaz, M., Nkaule, A., & Christoffels, A. (2019). Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Scientific Reports, 9(1), 2. https://doi.org/10.1038/s41598-019-40621-7
  • Sorrentino, R., Libertini, S., Pallante, P. L., Troncone, G., Palombini, L., Bavetsias, V., Spalletti-Cernia, D., Laccetti, P., Linardopoulos, S., Chieffi, P., Fusco, A., & Portella, G. (2005). Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. The Journal of Clinical Endocrinology and Metabolism, 90(2), 928–935. https://doi.org/10.1210/jc.2004-1518
  • Steinig, A. G., Mulvihill, M. J., Wang, J., Werner, D. S., Weng, Q., Coate, H., & Chen, X., inventors; OSI Pharmaceuticals LLC, assignee. (2012, May). 2-aminopyridine kinase inhibitors (United States Patent US 8,178,668). https://www.google.co.vi/patents/EP2325186A3
  • Tari, L. W., Hoffman, I. D., Bensen, D. C., Hunter, M. J., Nix, J., Nelson, K. J., McRee, D. E., & Swanson, R. V. (2007). Structural basis for the inhibition of Aurora A kinase by a novel class of high affinity disubstituted pyrimidine inhibitors. Bioorganic & Medicinal Chemistry Letters, 17(3), 688–691. https://doi.org/10.1016/j.bmcl.2006.10.086
  • Vasilevich, N. I., Tatarskiy, V. V., Aksenova, E. A., Kazyulkin, D. N., & Afanasyev, I. I. (2016). Search for potent and selective Aurora A inhibitors based on general Ser/Thr kinase pharmacophore model. Pharmaceuticals, 9(2), 19. Jhttps://doi.org/10.3390/ph9020019
  • Vianello, P. (2007). Aminopyridines: Selective AuroraA inhibitors. Expert Opinion on Therapeutic Patents, 17(2), 255–261. https://doi.org/10.1517/13543776.17.2.255
  • Wan, Y., He, S., Li, W., & Tang, Z. (2018). Indazole derivatives: Promising anti-tumor agents. Anti-Cancer Agents in Medicinal Chemistry, 18(9), 1228–1234. https://doi.org/10.2174/1871520618666180510113822
  • Wang, S., Midgley, C. A., Scaërou, F., Grabarek, J. B., Griffiths, G., Jackson, W., Kontopidis, G., McClue, S. J., McInnes, C., Meades, C., Mezna, M., Plater, A., Stuart, I., Thomas, M. P., Wood, G., Clarke, R. G., Blake, D. G., Zheleva, D. I., Lane, D. P., … Fischer, P. M. (2010). Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors. Journal of Medicinal Chemistry, 53(11), 4367–4378. https://doi.org/10.1021/jm901913s
  • Wang, X.-J., Chen, Y.-D., Yang, Q., & You, Q.-D. (2007). The pharmacophore hypothesis of novel inhibitors for Aurora A kinase. Chinese Journal of Chemistry, 25(12), 1911–1918. https://doi.org/10.1002/cjoc.200790352
  • Wilkinson, R. W., Odedra, R., Heaton, S. P., Wedge, S. R., Keen, N. J., Crafter, C., Foster, J. R., Brady, M. C., Bigley, A., Brown, E., Byth, K. F., Barrass, N. C., Mundt, K. E., Foote, K. M., Heron, N. M., Jung, F. H., Mortlock, A. A., Boyle, F. T., & Green, S. (2007). AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clinical Cancer Research, 13(12), 3682–3688. https://doi.org/10.1158/1078-0432.CCR-06-2979
  • Xu, Y., Hao, S. Y., Zhang, X. J., Li, W. B., Qiao, X. P., Wang, Z. X., & Chen, S. W. (2020). Discovery of novel 2,4-disubstituted pyrimidines as Aurora kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 30(3), 1268851https://doi.org/10.1016/j.bmcl.2019.126885
  • Yan, A., Wang, L., Xu, S., & Xu, J. (2011). Aurora-A kinase inhibitor scaffolds and binding modes. Drug Discovery Today, 16(5–6), 260–269. https://doi.org/10.1016/j.drudis.2010.12.003
  • Yang, K.-T., Li, S.-K., Chang, C.-C., Tang, C.-J C., Lin, Y.-N., Lee, S.-C., & Tang, T. K. (2010). Aurora-C kinase deficiency causes cytokinesis failure in meiosis I and production of large polyploid oocytes in mice. Molecular Biology of the Cell, 21(14), 2371–2383. https://doi.org/10.1091/mbc.e10-02-0170
  • Yingjun, Z., Bing, L., Jiancun, Z., Jiquan, Z., Xueqi, Y., Yanping, L. (2013). Substituted pyrimidine as aurora kinase inhibitor (Chinese patent WO2013143466A1). https://patents.google.com/patent/WO2013143466A1/sv.
  • Zhou, H., Kuang, J., Zhong, L., Kuo, W. L., Gray, J. W., Sahin, A., Brinkley, B. R., & Sen, S. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genetics, 20(2), 189–193. https://doi.org/10.1038/2496

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.