300
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Jatamansinol from Nardostachys jatamansi: a multi-targeted neuroprotective agent for Alzheimer’s disease

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 200-220 | Received 29 Nov 2020, Accepted 05 Nov 2021, Published online: 02 Dec 2021

References

  • Adeowo, F. Y., Ejalonibu, M. A., Elrashedy, A. A., Lawal, M. M., & Kumalo, H. M. (2021). Multi-target approach for Alzheimer’s disease treatment: Computational biomolecular modeling of cholinesterase enzymes with a novel 4-N-phenylaminoquinoline derivative reveal promising potentials. Journal of Biomolecular Structure & Dynamics, 39(11), 3825–3841.
  • Akmal, A., Javaid, A., Hussain, R., Kanwal, A., Zubair, M., & Ashfaq, U. A. (2019). Screening of phytochemicals against Keap1-NRF2 interaction to reactivate NRF2 functioning: Pharmacoinformatics based approach. Pakistan Journal of Pharmaceutical Sciences, 32(6 Supplementary), 2823–2828.
  • Alex, A., Millan, D. S., Perez, M., Wakenhut, F., & Whitlock, G. A. (2011). Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm, 2011, 2(7), 669–674. https://doi.org/10.1039/c1md00093d
  • Alzheimer’s Association. (2021). Alzheimer’s disease facts and figures. Alzheimer's Dementia, 17(3), 19–27.
  • Aoki, M., Yokota, T., Sugiura, I., Sasaki, C., Hasegawa, T., Okumura, C., Ishiguro, K., Toshiyuki, K., Shigetoshi, S., & Takao, M. (2004). Structural insight into nucleotide recognition in tau-protein kinase I/glycogen synthase kinase 3 beta. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 3), 439–446. https://doi.org/10.1107/S090744490302938X
  • Arora, R. B. (1965). Nardostachys jatamansi: A chemical, pharmacological and clinical appraisal. Special Report Series Indian Council Medical Research, 51, 1–117.
  • Atack, J. R., Perry, E. K., Bonham, J. R., Candy, J. M., & Perry, R. H. (1986). Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. Journal of Neurochemistry, 47(1), 263–277. https://doi.org/10.1111/j.1471-4159.1986.tb02858.x
  • Bagchi, A., Oshima, Y., & Hikino, H. (1991). Neolignans and lignans of Nardostachys jatamansi roots. Planta Medica, 57(1), 96–97. https://doi.org/10.1055/s-2006-960037
  • Barai, P., Raval, N., Acharya, S., Borisa, A., Bhatt, H., & Acharya, N. (2019). Neuroprotective effects of bergenin in Alzheimer's disease: Investigation through molecular docking, in vitro and in vivo studies. Behavioural Brain Research, 356, 18–40. https://doi.org/10.1016/j.bbr.2018.08.010
  • Bell, J. A., Cao, Y., Gunn, J. R., Day, T., Gallicchio, E., Zhou, Z., Levy, R., & Farid, R. (2012). PrimeX and the Schrödinger computational chemistry suite of programs. International Tables for Crystallography, 18, 534–538.
  • Bitencourt-Ferreira, G., Veit-Acosta, M., & de Azevedo, W. F. Jr. (2019). Van der Waals potential in protein complexes. Methods in Molecular Biology (Clifton, N.J.), 2053, 79–91.
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, Gregersen, B. A., Klepeis, J. L., Kolossvary, H., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., Shaw, D. E., (2006). Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters, Proceedings of the ACM/IEEE Conference on Supercomputing (SC06) Tampa, Florida, USA.
  • Brandes, M. S., & Nora, E. G. (2019). NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro, 12, 1–23.
  • Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovic, V., Guzenko, D., Hudson, B. P., Kalro, T., Liang, Y., … Zardecki, C. (2019). RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 47(D1), D464–D474. https://doi.org/10.1093/nar/gky1004
  • Cavdar, H., Senturk, M., Guney, M., Durdagi, S., Kayik, G., Supuran, C. T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: Kinetic and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 429–437. https://doi.org/10.1080/14756366.2018.1543288
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
  • Feunang, Y. D., Roman, E., Craig, K., Leonid, C., Janna, H., Gareth, O., Eoin, F., Christoph, S., Shankar, S., Evan, B., Russell, G., & David, S. W. (2016). ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. Journal of Chemiinformatics, 8, 61.
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Giacobini, E. (2003). Cholinesterases: New roles in brain function and in Alzheimer's disease. Neurochemical Research, 28(3–4), 515–522.
  • Gonçalves, V., Maltarollo, A., Gertrudes, J. C., Oliveira, P. R., & Honorio, K. M. (2015). Applying machine learning techniques for ADME-Tox prediction: A review. Expert Opinion on Drug Metabolism & Toxicology, 11(2), 259–271. https://doi.org/10.1517/17425255.2015.980814
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6–7), 591–604. https://doi.org/10.1007/s10822-010-9349-1
  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer's disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185. https://doi.org/10.1126/science.1566067
  • Harel, M., Kryger, G., Rosenberry, T. L., Mallender, W. D., Lewis, T., Fletcher, R. J., Guss, J. M., Silman, I., & Sussman, J. L. (2000). Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science: A Publication of the Protein Society, 9(6), 1063–1072. https://doi.org/10.1110/ps.9.6.1063
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143.
  • Huang, H. C., & Klein, P. S. (2006). Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer's disease. Current Drug Targets, 7(11), 1389–1397.
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608. https://doi.org/10.1016/S0022-2836(02)00470-9
  • Joshi, H., & Milind, P. (2006). Nardostachys jatamansi improves learning and memory in Mice. Journal of Medicinal Food, 9(1), 113–118.
  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
  • Kerr, F., Sofola-Adesakin, O., Ivanov, D. K., Gatliff, J., Gomez Perez-Nievas, B., Bertrand, H. C., Martinez, P., Callard, R., Snoeren, I., Cochemé, H. M., Adcott, J., Khericha, M., Castillo-Quan, J. I., Wells, G., Noble, W., Thornton, J., & Partridge, L. (2017). Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease. PLoS Genetics, 13(3), e1006593.
  • Kevin, J. B., Edmond, C., Huafeng, X., Ron, O., Dror, M. P., Eastwood, B. A., Gregersen, J. L. K., Istvan, K., Mark, A. M., Federico, D. S., John, K. S., Yibing, S., & David, E. S. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, pp. 11–17.
  • Khare, C. P. (2007). Indian medicinal plants: An illustrated dictionary. Springer International Edition, pp. 433–434.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Korolev, O. I. (2014). Alzheimer's disease: A clinical and basic science review. Medical Student Research Journal, 11(2), e0138866.
  • Košak, U., Brus, B., Knez, D., Šink, R., Žakelj, S., Trontelj, J., Pišlar, A., Šlenc, J., Gobec, M., Živin, M., Tratnjek, L., Perše, M., Sałat, K., Podkowa, A., Filipek, B., Nachon, F., Brazzolotto, X., Więckowska, A., Malawska, B., … Gobec, S. (2016). Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Scientific Reports, 6, 39495–39495.
  • Kumar, S., Chowdhury, S., & Kumar, S. (2017). In silico repurposing of antipsychotic drugs for Alzheimer's disease. BMC Neuroscience, 18(1), 76. https://doi.org/10.1186/s12868-017-0394-8
  • Leroy, K., Boutajangout, A., Authelet, M., Woodgett, J. R., Anderton, B. H., & Brion, J. P. (2002). The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer's disease. Acta Neuropathologica, 103(2), 91–99. https://doi.org/10.1007/s004010100435
  • LigPrep. (2020). New York, NY: Schrödinger, LLC.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Lo, S. C., Li, X., Henzl, M. T., Beamer, L. J., & Hannink, M. (2006). Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. The EMBO Journal, 25(15), 3605–3617.
  • Magalingam, K. B., Radhakrishnan, A., Ping, N. S., & Haleagrahara, N. (2018). Current concepts of neurodegenerative mechanisms in Alzheimer's disease. BioMed Research International, 2018, 3740461. https://doi.org/10.1155/2018/3740461
  • Meng, X. Y., Hong-Xing, Z., Mihaly, M., & Meng, C. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Meyer, E. A., Castellano, R. K., & Diederich, F. (2003). Interactions with aromatic rings in chemical and biological recognition. Angewandte Chemie (International ed. in English), 42(11), 1210–1250. https://doi.org/10.1002/anie.200390319
  • Murray, R. D. H., Mendez, J., & Brown, S. A. (1982). The natural coumarins occurrence, chemistry, and biochemistry. John Wiley and Sons Ltd.
  • Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, P. H., & Perry, R. H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. British Medical Journal, 2(6150), 1457–1459.
  • PrimeX. (2020). Schrödinger, LLC, New York, NY.
  • QikProp. (2020). Schrödinger, LLC, New York, NY.
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules (Basel, Switzerland), 23(5), 1038. https://doi.org/10.3390/molecules23051038
  • Rao, R. V., Descamps, O., John, V., & Bredesen, D. E. (2012). Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimer's Research & Therapy, 4(3), 22. https://doi.org/10.1186/alzrt125
  • Rodríguez, S. N., Perry, G., Zhu, X., Moreira, P. I., & Williams, S. (2012). Glycogen synthase kinase 3: A point of integration in Alzheimer's disease and a therapeutic target? International Journal of Alzheimer's Disease, 2012, 276803. https://doi.org/10.1155/2012/276803
  • Sadot, E., Gurwitz, D., Barg, J., Behar, L., Ginzburg, I., & Fisher, A. (1996). Activation of m1 muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. Journal of Neurochemistry, 66(2), 877–880. https://doi.org/10.1046/j.1471-4159.1996.66020877.x
  • Seniya, C., Khan, G. J., & Uchadia, K. (2014). Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer’s disorders using molecular docking and molecular dynamics simulation . Biochemistry Research International, 2014, 705451. https://doi.org/10.1155/2014/705451
  • Shanbhag, S. N., Mesta, C. K., Maheshwari, M. L., & Bhattacharyya, S. C. (1965). Constituents of Nardostachys jatamansi and synthesis of (±) dihydrojatamansin and visnadin from jatamansin. Tetrahedron, 21(12), 3591–3597. https://doi.org/10.1016/S0040-4020(01)96975-3
  • Sharma, A. (2016). Neuroprotective agents. In: S. Penta (Ed.), Advances in structure and activity relationship of coumarin derivatives (pp. 77–99). Academic Press.
  • Shelley, J. C., Cholleti, A., Frye, L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK( a ) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Singh, R., H., Narsimhamurthy, K., & Singh, G. (2008). Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology, 9(6), 369–374. https://doi.org/10.1007/s10522-008-9185-z
  • Stefanachi, A., Leonetti, F., Pisani, L., Catto, M., & Carotti, A. (2018). Coumarin: A Natural, privileged and versatile scaffold for bioactive compounds. Molecules, 23(2), 250. https://doi.org/10.3390/molecules23020250
  • Tuccinardi, T. (2021). What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opinion on Drug Discovery, 16(11), 1233–1237.
  • Yu, H., & Adedoyin, A. (2003). ADME-Tox in drug discovery: Integration of experimental and computational technologies. Drug Discovery Today, 8(18), 852–861. https://doi.org/10.1016/S1359-6446(03)02828-9
  • Zhang, C., Feng, L., J., Huang, Y., Wu, D., Li, Z., Zhou, Q., Wu, Y., & Luo, H. B. (2017). Discovery of novel phosphodiesterase-2A inhibitors by structure-based virtual Screening, Structural Optimization, and Bioassay. Journal of Chemical Information and Modeling, 57(2), 355–364. https://doi.org/10.1021/acs.jcim.6b00551

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.