292
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Design, synthesis and biological evaluation of novel antipyrine based α-aminophosphonates as anti-Alzheimer and anti-inflammatory agent

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 386-401 | Received 26 Aug 2021, Accepted 09 Nov 2021, Published online: 08 Dec 2021

References

  • Alam, M. S., Choi, J.-H., & Lee, D.-U. (2012). Synthesis of novel schiff base analogues of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorganic & Medicinal Chemistry, 20(13), 4103–4108. https://doi.org/10.1016/j.bmc.2012.04.058
  • Bacha, A. B., Jemel, I., Moubayed, N. M. S., & Abdelmalek, I. B. (2017). Purification and characterization of a newly serine protease inhibitor from Rhamnus frangula with potential for use as therapeutic drug. 3 Biotech, 7(2), 148–161. https://doi.org/10.1007/s13205-017-0764-z
  • Bajda, M., Więckowska, A., Hebda, M., Guzior, N., Sotriffer, C. A., & Malawska, B. (2013). Structure-based search for new inhibitors of cholinesterases. International Journal of Molecular Sciences, 14(3), 5608–5632. https://doi.org/10.3390/ijms14035608
  • Bekhit, A. A., & Abdel-Aziem, T. (2004). Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorganic & Medicinal Chemistry, 12(8), 1935–1945. https://doi.org/10.1016/j.bmc.2004.01.037
  • Brothers, H. M., Gosztyla, M. L., & Robinson, S. R. (2018). The physiological roles of Amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Frontiers in Aging Neuroscience, 10, 118–126. https://doi.org/10.3389/fnagi.2018.00118
  • Brus, B., Košak, U., Turk, S., Pišlar, A., Coquelle, N., Kos, J., Stojan, J., Colletier, J.-P., & Gobec, S. (2014). Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. Journal of Medicinal Chemistry, 57(19), 8167–8179. https://doi.org/10.1021/jm501195e
  • Çinar, E., Başaran, E., Erdoğan, Ö., Çakmak, R., Boğa, M., & Çevik, Ö. (2021). Synthesis and biological evaluation of some pyrazolone based Schiff base derivatives as enzymes inhibitors, antioxidant, and anticancer agents. Research Square. https://doi.org/10.21203/rs.3.rs-540190/v1
  • Cohn, E. J. (1925). The Physical chemistry of the proteins. Physiological Reviews, 5(3), 349–437. https://doi.org/10.1152/physrev.1925.5.3.349
  • Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. https://doi.org/10.2174/1570159X11311030006
  • de Lima, B. R., Lima, J. M., Maciel, J. B., Valentim, C. Q., Nunomura, R., de, C. S., Lima, E. S., Koolen, H. H. F., de Souza, A. D. L., Pinheiro, M. L. B., Cass, Q. B., & da Silva, F. M. A. (2019). Synthesis and inhibition evaluation of new benzyltetrahydroprotoberberine alkaloids designed as acetylcholinesterase inhibitors. Frontiers in Chemistry, 7, 629–632. https://doi.org/10.3389/fchem.2019.00629
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187(1-3), 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
  • El-Sayed, N. F., El-Hussieny, M., Ewies, E. F., Fouad, M. A., & Boulos, L. S. (2020). New phosphazine and phosphazide derivatives as multifunctional ligands targeting acetylcholinesterase and β-Amyloid aggregation for treatment of Alzheimer’s disease. Bioorganic Chemistry, 95, 103499. https://doi.org/10.1016/j.bioorg.2019.103499
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Evstropov, A. N., Yavorovskaya, V. E., Vorob'ev, E. S., Khudonogova, Z. P., Gritsenko, L. N., Shmidt, E. V., Medvedeva, S. G., Filimonov, V. D., Prishchep, T. P., & Saratikov, A. S. (1992). Synthesis and antiviral activity of antipyrine derivatives. Pharmaceutical Chemistry Journal, 26(5), 426–430. https://doi.org/10.1007/BF00772907
  • Fatahala, S. S., Hasabelnaby, S., Goudah, A., Mahmoud, G. I., & Abd-El Hameed, R. H. (2017). Pyrrole and fused pyrrole compounds with bioactivity against inflammatory mediators. Molecules, 22(3), 461–479. https://doi.org/10.3390/molecules22030461
  • Garavito, R. M., & Mulichak, A. M. (2003). The structure of mammalian cyclooxygenases. Annual Review of Biophysics and Biomolecular Structure, 32(1), 183–206. https://doi.org/10.1146/annurev.biophys.32.110601.141906
  • Ghorab, M. M., El-Gazzar, M. G., & Alsaid, M. S. (2014). Synthesis, characterization and anti-breast cancer activity of new 4-Aminoantipyrine-based heterocycles. International Journal of Molecular Sciences, 15(5), 7539–7553. https://doi.org/10.3390/ijms15057539
  • Giacobini, E. (2003). Cholinesterases: New roles in brain function and in Alzheimer’s disease. Neurochemical Research, 28(3–4), 515–522. https://doi.org/10.1023/A:1022869222652
  • Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q.-S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17213–17218. https://doi.org/10.1073/pnas.0508575102
  • Gupta, S., Fallarero, A., Järvinen, P., Karlsson, D., Johnson, M. S., Vuorela, P. M., & Mohan, C. G. (2011). Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques. Bioorganic & Medicinal Chemistry Letters, 21(4), 1105–1112. https://doi.org/10.1016/j.bmcl.2010.12.131
  • Gürsoy, A., Demirayak, Ş., Çapan, G., Erol, K., & Vural, K. (2000). Synthesis and preliminary evaluation of new 5-pyrazolinone derivatives as analgesic agents. European Journal of Medicinal Chemistry, 35(3), 359–364. https://doi.org/10.1016/S0223-5234(00)00117-3
  • Guzman-Martinez, L., Maccioni, R. B., Andrade, V., Navarrete, L. P., Pastor, M. G., & Ramos-Escobar, N. (2019). Neuroinflammation as a Common Feature of neurodegenerative disorders. Frontiers in Pharmacology, 10, 1008–1017. https://doi.org/10.3389/fphar.2019.01008
  • Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P., Vendruscolo, M., Iwatsubo, T., Masters, C. L., Cho, M., Lannfelt, L., Cummings, J. L., & Vergallo, A. (2021). The Amyloid-β pathway in Alzheimer’s disease. Molecular Psychiatry. https://doi.org/10.1038/s41380-021-01249-0
  • Hampel, H., Mesulam, M.-M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., Khachaturian, A. S., Vergallo, A., Cavedo, E., Snyder, P. J., & Khachaturian, Z. S. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 141(7), 1917–1933. https://doi.org/10.1093/brain/awy132
  • Hampel, H., Mesulam, M.-M., Cuello, A. C., Khachaturian, A. S., Vergallo, A., Farlow, M. R., Snyder, P. J., Giacobini, E., & Khachaturian, Z. S. (2018). Revisiting the cholinergic hypothesis in Alzheimer’s disease: Emerging evidence from translational and clinical research. The Journal of Prevention of Alzheimer's Disease, 6(1), 2–15. https://doi.org/10.14283/jpad.2018.43
  • Harel, M., Sussman, J. L., Krejci, E., Bon, S., Chanal, P., Massoulie, J., & Silman, I. (1992). Conversion of acetylcholinesterase to butyrylcholinesterase: Modeling and mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10827–10831. https://doi.org/10.1073/pnas.89.22.10827
  • Heppner, F. L., Ransohoff, R. M., & Becher, B. (2015). Immune attack: The role of inflammation in Alzheimer disease. Nature Reviews. Neuroscience, 16(6), 358–372. https://doi.org/10.1038/nrn3880
  • İspir, E., Toroğlu, S., & Kayraldız, A. (2008). Syntheses, characterization, antimicrobial and genotoxic activities of new schiff bases and their complexes. Transition Metal Chemistry, 33(8), 953–960. https://doi.org/10.1007/s11243-008-9135-2
  • Joshi, A. J., Bhojwani, H. R., & Joshi, U. J. (2018). Strategies to select the best pharmacophore model: A case study in pyrazoloquinazoline class of PLK-1 inhibitors. Medicinal Chemistry Research, 27(1), 234–260. https://doi.org/10.1007/s00044-017-2057-9
  • Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer's & Dementia (New York, N. Y.), 4(1), 575–590. https://doi.org/10.1016/j.trci.2018.06.014
  • Kryger, G., Silman, I., & Sussman, J. L. (1999). Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure, 7(3), 297–307. https://doi.org/10.1016/S0969-2126(99)80040-9
  • Kumar, A., Pintus, F., Di Petrillo, A., Medda, R., Caria, P., Matos, M. J., Viña, D., Pieroni, E., Delogu, F., Era, B., Delogu, G. L., & Fais, A. (2018). Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Scientific Reports, 8(1), 4424–4436. https://doi.org/10.1038/s41598-018-22747-2
  • Liu, B., & Hong, J.-S. (2003). Role of microglia in inflammation-mediated neurodegenerative diseases: Mechanisms and strategies for therapeutic intervention. The Journal of Pharmacology and Experimental Therapeutics, 304(1), 1–7. https://doi.org/10.1124/jpet.102.035048
  • Luo, W., Su, Y.-B., Hong, C., Tian, R.-G., Su, L.-P., Wang, Y.-Q., Li, Y., Yue, J.-J., & Wang, C.-J. (2013). Design, synthesis and evaluation of novel 4-dimethylamine flavonoid derivatives as potential multi-functional anti-Alzheimer agents. Bioorganic & Medicinal Chemistry, 21(23), 7275–7282. https://doi.org/10.1016/j.bmc.2013.09.061
  • Manjunath, M., Kulkarni, A. D., Bagihalli, G. B., Malladi, S., & Patil, S. A. (2017). Bio-important antipyrine derived schiff bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation. Journal of Molecular Structure, 1127, 314–321. https://doi.org/10.1016/j.molstruc.2016.07.123
  • Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
  • Mengji, A. K., Yaga, U. S., Besta, R., & Soankamble, S. (2015). C-reactive protein: An inflammatory biomarker in oral cancer. Journal of Indian Academy of Oral Medicine and Radiology, 27(4), 565–568. https://doi.org/10.4103/0972-1363.188762
  • Mohanram, I., & Meshram, J. (2014). Synthesis and biological activities of 4-Aminoantipyrine derivatives derived from betti-type reaction. ISRN Organic Chemistry, 2014, 639392. https://doi.org/10.1155/2014/639392
  • Mulla, S. A. R., Pathan, M. Y., Chavan, S. S., Gample, S. P., & Sarkar, D. (2014). Highly efficient one-pot multi-component synthesis of α-aminophosphonates and bis-α-aminophosphonates catalyzed by heterogeneous reusable silica supported dodecatungstophosphoric acid (DTP/SiO2) at ambient temperature and their antitubercular evaluation a. RSC Advances, 4(15), 7666–7672. https://doi.org/10.1039/c3ra45853a
  • Pourshojaei, Y., Abiri, A., Eskandari, K., Haghighijoo, Z., Edraki, N., & Asadipour, A. (2019). Phenoxyethyl piperidine/morpholine derivatives as PAS and CAS inhibitors of cholinesterases: Insights for future drug design. Scientific Reports, 9(1), 19855. https://doi.org/10.1038/s41598-019-56463-2
  • Rastogi, S., Mohammed, I. S., & Ohri, D. (2018). In vitro study of anti-inflammatory and antioxidant activity of some medicinal plants and their interrelationship. Asian Journal of Pharmaceutical and Clinical Research, 11(4), 195–202. https://doi.org/10.22159/ajpcr.2018.v11i4.23583
  • Rostom, S. A. F., El-Ashmawy, I. M., Abd El Razik, H. A., Badr, M. H., & Ashour, H. M. A. (2009). Design and synthesis of some thiazolyl and thiadiazolyl derivatives of antipyrine as potential non-acidic anti-inflammatory, analgesic and antimicrobial agents. Bioorganic & Medicinal Chemistry, 17(2), 882–895. https://doi.org/10.1016/j.bmc.2008.11.035
  • Rummel, N. G., & Butterfield, D. A. (2021). Altered metabolism in Alzheimer disease brain: Role of oxidative stress. Antioxidants & Redox Signaling. https://doi.org/10.1089/ars.2021.0177
  • Saini, R., & Saxena, A. K. (2019). The structural hybrids of acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease: A review. Alzheimer’s & Neurodegenerative Diseases, 4(1), 1–25. https://doi.org/10.24966/AND-9608/100015
  • Se Thoe, E., Fauzi, A., Tang, Y. Q., Chamyuang, S., & Chia, A. Y. Y. (2021). A review on advances of treatment modalities for Alzheimer’s disease. Life Sciences, 276, 119129. https://doi.org/10.1016/j.lfs.2021.119129
  • Shaik, T. B., Hasti, S., Syed, R., Nagam, V., Tartte, V., & Chamarthi, N. R. (2016). Microwave-assisted neat synthesis of α-aminophosphonate/phosphinate derivatives of 2-(2-aminophenyl)benzothiazole as potent antimicrobial and antioxidant agents. Phosphorus, Sulfur, and Silicon and the Related Elements, 191(10), 1339–1343. https://doi.org/10.1080/10426507.2016.1192629
  • Shaikh, S., Dhavan, P., Pavale, G., Ramana, M. M. V., & Jadhav, B. L. (2020). Design, synthesis and evaluation of pyrazole bearing α-aminophosphonate derivatives as potential acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorganic Chemistry, 96, 103589. https://doi.org/10.1016/j.bioorg.2020.103589
  • Shaikh, S., Dhavan, P., Ramana, M. M. V., & Jadhav, B. L. (2021). Design, synthesis and evaluation of new chromone-derived aminophosphonates as potential acetylcholinesterase inhibitor. Molecular Diversity, 25(2), 811–825. https://doi.org/10.1007/s11030-020-10060-y
  • Shaikh, S., Dhavan, P., Singh, P., Uparkar, J., Vaidya, S. P., Jadhav, B. L., & Ramana, M. V. (2020). Synthesis of carbazole based α-aminophosphonate derivatives: Design, molecular docking and in vitro cholinesterase activity. Journal of Biomolecular Structure and Dynamics, 2020, 1–23. https://doi.org/10.1080/07391102.2020.1861981
  • Shaikh, S. F., Dhavan, P. P., Singh, P. R., Vaidya, S. P., Jadhav, B. L., & Ramana, M. M. V. (2021). Synthesis of novel quinoline–benzoxazolinone ester hybrids: In vitro anti-inflammatory activity and antibacterial activity. Russian Journal of Bioorganic Chemistry, 47(2), 572–583. https://doi.org/10.1134/S1068162021020242
  • Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Molecular Medicine Reports, 20(2), 1479–1487. https://doi.org/10.3892/mmr.2019.10374
  • Sieńczyk, M., & Oleksyszyn, J. (2009). Irreversible inhibition of serine proteases - Design and in vivo activity of diaryl alpha-aminophosphonate derivatives. Current Medicinal Chemistry, 16(13), 1673–1687. https://doi.org/10.2174/092986709788186246
  • Sigroha, S., Narasimhan, B., Kumar, P., Khatkar, A., Ramasamy, K., Mani, V., Mishra, R. K., & Majeed, A. B. A. (2012). Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones. Medicinal Chemistry Research, 21(11), 3863–3875. https://doi.org/10.1007/s00044-011-9906-8
  • Stellenboom, N., & Şentürk, M. (2019). Enzyme inhibition studies of antipyrine and aminopyrine. Eastern Anatolian Journal of Science, 5(1), 1–6. https://dergipark.org.tr/en/pub/eajs/issue/46394/544265
  • Suárez, D., Díaz, N., Fontecilla-Camps, J., & Field, M. J. (2006). A computational study of the deacylation mechanism of human butyrylcholinesterase. Biochemistry, 45(24), 7529–7543. https://doi.org/10.1021/bi052176p
  • Sudileti, M., Chintha, V., Nagaripati, S., Gundluru, M., Shaik, Y. H., Wudayagiri, R., & Cirandur, S. R. (2019). Green synthesis, molecular docking, anti-oxidant and anti-inflammatory activities of α-aminophosphonates. Medicinal Chemistry Research, 28(10), 1740–1754. https://doi.org/10.1007/s00044-019-02411-8
  • Tok, F., Koçyiğit-Kaymakçıoğlu, B., Sağlık, B. N., Levent, S., Özkay, Y., & Kaplancıklı, Z. A. (2019). Synthesis and biological evaluation of new pyrazolone schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorganic Chemistry, 84, 41–50. https://doi.org/10.1016/j.bioorg.2018.11.016
  • Tyagi, M., Chandra, S., Tyagi, P., Akhtar, J., Kandan, A., & Singh, B. (2017). Synthesis, characterization and anti-fungal evaluation of Ni(II) and Cu(II) complexes with a derivative of 4-aminoantipyrine. Journal of Taibah University for Science, 11(1), 110–120. https://doi.org/10.1016/j.jtusci.2015.11.003
  • Wegmann, S., Biernat, J., & Mandelkow, E. (2021). A current view on Tau protein phosphorylation in Alzheimer’s disease. Current Opinion in Neurobiology, 69, 131–138. https://doi.org/10.1016/j.conb.2021.03.003
  • Wyss-Coray, T., & Rogers, J. (2012). Inflammation in Alzheimer disease-A brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine, 2(1), a006346. https://doi.org/10.1101/cshperspect.a006346
  • Xie, D., Zhang, A., Liu, D., Yin, L., Wan, J., Zeng, S., & Hu, D. (2017). Synthesis and antiviral activity of novel a-aminophosphonates containing 6-fluorobenzothiazole moiety. Phosphorus, Sulfur, and Silicon and the Related Elements, 192(9), 1061–1067. https://doi.org/10.1080/10426507.2017.1323895
  • Zhao, Z., Dai, X., Li, C., Wang, X., Tian, J., Feng, Y., Xie, J., Ma, C., Nie, Z., Fan, P., Qian, M., He, X., Wu, S., Zhang, Y., & Zheng, X. (2020). Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. European Journal of Medicinal Chemistry, 186, 111893. https://doi.org/10.1016/j.ejmech.2019.111893

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.