302
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Monitoring the interactions between bovine serum albumin and ZnO/Ag nanoparticles by spectroscopic techniques

, , , , , & ORCID Icon show all
Pages 352-365 | Received 21 Apr 2021, Accepted 09 Nov 2021, Published online: 25 Nov 2021

References

  • Agnieszka, S., Michał, W., & Małgorzata, M.-J. (2020). In vitro investigations of acetohexamide binding to glycated serum albumin in the presence of fatty acid. Molecules, 25, 2340. https://doi.org/10.3390/molecules25102340
  • Akram, M., Ansari, F., Bhat, I. A., & Kabir-ud-Din. (2019). Probing interaction of bovine serum albumin (BSA) with the biodegradable version of cationic gemini surfactants. Journal of Molecular Liquids, 276, 519–528. https://doi.org/10.1016/j.molliq.2018.10.123
  • Anbouhi, T. S., Esfidvajani, E. M., Nemati, F., Haghighat, S., Sari, S., Attar, F., Pakaghideh, A., Sohrabi, M. J., Mousavi, S. E., & Falahati, M. (2019). Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles. International Journal of Nanomedicine, 14, 243–256. https://doi.org/10.2147/IJN.S188497
  • Aristos, I., & Constantinos, V. (2019). Probing hemoglobin glyco-products by fluorescence spectroscopy. RSC Advances, 9, 37614–37619. https://doi.org/10.1039/C9RA05243G
  • Ayonbala, B., Lakkoji, S., Dipti, P. D., Harekrushna, S., & Malay, K. G. (2017). Construing the interactions between MnO2 nanoparticle and bovine serum albumin: insight into the structure and stability of a protein–nanoparticle complex. New Journal of Chemistry, 41, 8130–8139. https://doi.org/10.1039/C7NJ01227F
  • Bhogale, A., Patel, N., Mariam, J., Dongre, P. M., Miotello, A., & Kothari, D. C. (2014). Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Colloids and Surfaces B: Biointerfaces, 113, 276–284. https://doi.org/10.1016/j.colsurfb.2013.09.021
  • Bhogalea, A., Patelb, N., Mariamc, J., Dongrec, P. M., Miotellob, A., & Kothari, D. C. (2014). Comprehensive studies on the interaction of copper nanoparticleswith bovine serum albumin using various spectroscopies. Colloids and Surfaces B: Biointerfaces, 113, 276–284. https://doi.org/10.1016/j.colsurfb.2013.09.021
  • Brauner, J. W., Flach, C. R., & Mendelsohn, R. (2005). A quantitative reconstruction of the amide I contour in the IR spectra of globular proteins: from structure to spectrum. Journal of the American Chemical Society, 127, 100–109. https://doi.org/10.1021/ja0400685
  • Brotati, C., Chaitrali, S., Pal, U., & Basu, S. (2017). Acridone in a biological nanocavity: detailed spectroscopic and docking analyses of probing both the tryptophan residues of bovine serum albumin. New Journal of Chemistry, 41, 12520–12534. https://doi.org/10.1039/C7NJ02454A
  • Dai, C., Xuerui, W., Jinlei, T., Zhang, X., Chunling, W., & He L. (2019). Characterization of the binding mechanism and conformational changes of bovine serum albumin upon interaction with aluminum-maltol: a spectroscopic and molecular docking study. Metallomics, 11, 1625–1634. https://doi.org/10.1039/c9mt00088g
  • Chakraborti, S., Joshi, P., Chakravarty, D., Shanker, V., Ansari, Z. A., Singh, S. P., & Chakrabarti, P. (2012). Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin. Langmuir: The Acs Journal of Surfaces and Colloids, 28(30), 11142–11152. https://doi.org/10.1021/la3007603
  • Cheng, Z., Liu, R., & Jiang, X. (2013). Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 92–105. https://doi.org/10.1016/j.saa.2013.06.007
  • Chengjie, J., Guang, X., Feixia, D., Wen, H., & Taichang, T. (2020). Study on the antibacterial activities of emodin derivatives against clinical drug-resistant bacterial strains and their interaction with proteins. Annals of Translational Medicine, 8, 92. https://doi.org/10.21037/atm.2019.12.100
  • D’Souza, L., Devi, P., Shridhar, D. M., & Naik, C. G. (2008). Use of Fourier transform infrared (FTIR) spectroscopy to study cadmium-induced changes in padina tetrastromatica (Hauck). Analytical Chemistry Insights, 3, 135–143.
  • Ding, W., Zhao, L., Yan, H., Wang, X., Liu, X., Zhang, X., Huang, X., Hang, R., Yao, X., & Tang, B. (2019). Bovine serum albumin assisted synthesis of Ag/Ag2O/ZnO photocatalyst with enhanced photocatalytic activity under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568, 131–140., https://doi.org/10.1016/j.colsurfa.2019.02.015
  • Dumas, P., & Miller, L. (2003). The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vibrational Spectroscopy, 32, 3–21. https://doi.org/10.1016/S0924-2031(03)00043-2
  • Gao, H., & He, Q. (2014). The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opinion on Drug Delivery, 11, 409–420. https://doi.org/10.1517/17425247.2014.877442
  • Ghasem, R. B., & Zari, H. (2016). Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods. Materials Science and Engineering: C, 621, 806–815.
  • Hassan, A. A. (2019). FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin. Scientia Pharmaceutica, 87, 5. https://doi.org/10.3390/scipharm87010005
  • Hu, Y. J., Liu, Y., Shen, X. S., Fang, X. Y., & Qu, S. S. (2005). Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. Journal of Molecular Structure, 738, 143–147. https://doi.org/10.1016/j.molstruc.2004.11.062
  • Jackson, M., & Mantsch, H. H. (1996). Infrared Spectroscopy of Biomolecules. In: H.H. Mantsch & D. Chapman (Eds.). Wiley-Liss (p. 311).
  • Jiali, G., Xumei, L., Gang, Y., Hong, C., & Ting, S. (2019). Investigation of the interaction of chrysene and bovine serum albumin by multispectroscopic method. Polycyclic Aromatic Compounds, https://doi.org/10.1080/10406638.2020.1718718
  • Jiao, Q., Wang, R., Jiang, Y., et. al. (2018). Study on the interaction between active components from traditional Chinese medicine and plasma proteins. Chemistry Central Journal, 12, 48, https://doi.org/10.1186/s13065-018-0417-2
  • Kamonrat, P., Waralee, R., Supaluk, P., Virapong, P., & Tanawut, T. (2020). Insight into the molecular interaction of cloxyquin (5-chloro-8-hydroxyquinoline) with bovine serum albumin: Biophysical analysis and computational simulation. International Journal of Molecular Sciences, 21, 249. https://doi.org/10.3390/ijms21010249
  • Karolina, W. (2020). Biological barriers, and the influence of protein binding on the passage of drugs across them. Molecular Biology Reports, 47, 3221–3231.
  • Kumar, P., Kumar, P., Deep, A., & Bharadwaj, L. M. (2013). Synthesis and conjugation of ZnO nanoparticles with bovine serum albumin for biological applications. Applied Nanoscience, 3, 141–144. https://doi.org/10.1007/s13204-012-0101-0
  • Lakowicz, J. (2006). Principles of fluorescence spectroscopy, Springer.
  • Lin, S.-Y., Wei, Y.-S., Li, M.-J., & Wang, S.-L. (2004). Effect of ethanol or/and captopril on the secondary structure of human serum albumin before and after protein binding. European Journal of Pharmaceutics and Biopharmaceutics, 57, 457–464. https://doi.org/10.1016/j.ejpb.2004.02.005
  • Malarkani, K., Sarkar, I., & Selvam, S. (2018). Denaturation studies on bovine serum albumin-bile salt system: Bile salt stabilizes bovine serum albumin through hydrophobicity. Journal of Pharmaceutical Analysis., 8, 27–36. https://doi.org/10.1016/j.jpha.2017.06.007
  • Marcelo, G., Muñoz-Bonilla, A., Rodríguez-Hernández, J., & Fernández-García, M. (2013). Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator. Polymer Chemistry, 4, 558–567. https://doi.org/10.1039/C2PY20514A
  • Mohammed, M. A., Abdulrahman, A. A., Ahmed, H. B., Nawaf, A. A., Hamad, M. A., & Tanveer, A. W. (2019). Mechanistic interaction study of 5,6-Dichloro-2-[2-(pyridin-2-yl)ethyl]isoindoline-1,3-dione with bovine serum albumin by spectroscopic and molecular docking approaches. Saudi Pharmaceutical Journal, 27, 341–347. https://doi.org/10.1016/j.jsps.2018.12.001
  • Namrata, S., Darshana, P., Surbhi, J., Sunil, N., & Kishore, N. (2018). Interaction of copper (II) complexes by bovine serum albumin: spectroscopic and calorimetric insights. Journal of Biomolecular Structure and Dynamics, 36, 2449–2462. https://doi.org/10.1080/07391102.2017.1355848
  • Okuda, M., Eloi, J. C., Jones, S. E. W., Sarua, A., Richardson, R. M., & Schwarzacher, W. (2012). Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures. Nanotechnology, 23(41), 415601. https://doi.org/10.1088/0957-4484/23/41/415601
  • Pacheco, M. E., & Bruzzone, L. (2013). Synchronous fluorescence spectrometry: Conformational investigation or inner filter effect? Journal of Luminescense, 137, 138–142. https://doi.org/10.1016/j.jlumin.2012.12.056
  • Pasricha, S., Sharma, D., Ojha, H., et al. (2017). Luminescence, circular dichroism and in silico studies of binding interaction of synthesized naphthylchalcone derivatives with bovine serum albumin. Luminescence, 32, 1252–1262. https://doi.org/10.1002/bio.3319
  • Peters, T. (1985). Serum albumin. Advances in Protein Chemistry, 37, 161–245. https://doi.org/10.1016/S0065-3233(08)60065-0.
  • Qashqoosh, M. T. A., Manea, Y. K., Alahdal, F. A. M., et. al. (2019). Investigation of conformational changes of bovine serum albumin upon binding with benzocaine drug: A spectral and computational analysis. BioNanoScience, 9, 848–858. https://doi.org/10.1007/s12668-019-00663-7
  • Rahman, A. J., Sharma, D., Kumar, D., Pathak, M., Singh, A., Kumar, V., Chawla, R., & Ojha, H. (2021). Spectroscopic and molecular modelling study of binding mechanism of bovine serum albumin with phosmet. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 244, 118803. https://doi.org/10.1016/j.saa.2020.118803
  • Romu, A., Li, A., Chen, K., Korlipara, V., & Wang, E. (2019). UV-vis, fluorescence and molecular docking studies on the binding of bovine and human serum albumins with novel anticancer drug candidates. Journal of Biochemistry and Analytical Studies, 4(1). https://doi.org/10.16966/2576-5833.116
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Sathish, D., Pihu, M., Goutam, G., Dhanashree, D. J., Prajakta, D., & Ratnesh, J. (2019). How the surface functionalized nanoparticles affect conformation and activity of proteins: Exploring through protein-nanoparticle interactions. Bioorganic Chemistry, 82, 17–25. https://doi.org/10.1016/j.bioorg.2018.09.020
  • Sharma, A., & Schulman, S. G. (1999). Introduction to fluorescence spectroscopy, John Wiley & Sons, Inc.
  • Sharma, D., Singh, A., Kukreti, S., Pathak, M., Kaur, L., Kaushik, V., & Ojha, H. (2020). Protection by ethyl pyruvate against gamma radiation induced damage in bovine serum albumin. International Journal of Biological Macromolecules, 150, 1053–1060. https://doi.org/10.1016/j.ijbiomac.2019.10.110
  • Sharmin, S., Faisal, A., Ishrat, J., Shahid, M. N., & Mohammad, T. (2019). A comprehensive spectroscopic and computational investigation on the binding of the anti-asthmatic drug triamcinolone with serum albumin. New Journal of Chemistry, 43, 4137–4151. https://doi.org/10.1039/C8NJ05486J
  • Sjoholm, I., Ekman, B., Kober, A., Pahlman, I. L., Seiving, B., & Sjodin, T. (1979). Binding of drugs to human serum albumin: XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. Molecular Pharmacology, 16(3), 767–777.
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1975). The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology, 11, 824–832.
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1976). Further characterization of specific drug binding sites on human serum albumin. Molecular Pharmacology, 12(6), 1052–1061.
  • Suma, K. P., & Seetharamappa, J. (2019). Interaction of repaglinide with bovine serum albumin: Spectroscopic and molecular docking approaches. Journal of Pharmaceutical Analysis, 9, 274–283. https://doi.org/10.1016/j.jpha.2019.03.007
  • Suresh, P. K., Divya, N., Nidhi, S., & Rajasekaran, R. (2018). Phenytoin-Bovine Serum Albumin interactions – modeling plasma protein – drug binding: A multi-spectroscopy and in silico-based correlation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 523–527. https://doi.org/10.1016/j.saa.2017.12.069
  • Tayyab, S., Min, L. H., Kabir, M. Z., Kandandapani, S., Ridzwan, N. F. W., & Mohamad, S. B. (2020). Exploring the interaction mechanism of a dicarboxamide fungicide, iprodione with bovine serum albumin. Chemical Papers, 74, 1633–1646. https://doi.org/10.1007/s11696-019-01015-1
  • Trynda-Lemiesz, L., Karaczyn, A., Keppler, B. K., & Kozłowski, H. (2000). Studies on the interactions between human serum albumin and trans-indazolium (bisindazole) tetrachlororuthenate(III). Journal of Inorganic Biochemistry, 78(4), 341–346. https://doi.org/10.1016/S0162-0134(00)00062-3
  • Ufana, R., Ashraf, S. M., Sapana, J., Vaibhav, B., & Prabhat, K. (2019). Spectroscopic and biophysical interaction studies of water-soluble dye modified poly(o-phenylenediamine) for its potential application in BSA detection and bioimaging. Scientific Reports, 9(1), 8544. https://doi.org/10.1038/s41598-019-44910-z
  • Ulrich, K. H. (1981). Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews, 33, 17–53.
  • Umesha, K., Yallur, B. C., Manjunatha, D. H., & Murali Krishna, P. (2019). BSA interaction and DNA cleavage studies of newly synthesized anti-bacterial Benzothiazol-2-yl-malonaldehyde. Journal of Molecular Structure, 1196, 96–104. https://doi.org/10.1016/j.molstruc.2019.06.062
  • Vaishanav, S. K., Chandraker, K., Korram, J., Nagwanshi, R., Ghosh, K. K., & Satnami, M. L. (2016). Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies. Journal of Molecular Structure, 1117, 300–310. https://doi.org/10.1016/j.molstruc.2016.03.087
  • Vera-Villalobos, J., Alvarado, Y. J., Vera-Parra, E., Mendez, A., Romero, F., Gonzalez-Paz, L. A., Moncayo, L. S., Restrepo, J., Rodríguez-Lugo, P., & Paz, J. L. (2021). Conformational change of ovalbumin induced by surface cavity binding of n-phthaloyl gamma-aminobutyric acid derivative: A study theoretical and experimental. Biointerface Research in Applied Chemistry, 11(2), 9566–9586. https://doi.org/10.33263/briac112.95669586.
  • Vishwas, D. S., Laxman, S. W., Anil, H. G., Prashant, V. A., & Govind, B. K. (2016). Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. Journal of Pharmaceutical Analysis, 6, 56–63. https://doi.org/10.1016/j.jpha.2015.07.001
  • Waghmare, M., Khade, B., Chaudhari, P., et. al. (2018). Multiple layer formation of bovine serum albumin on silver nanoparticles revealed by dynamic light scattering and spectroscopic techniques. Journal of Nanoparticle Research, 20, 185. https://doi.org/10.1007/s11051-018-4286-3
  • Wang, B.-L., Pan, D.-Q., Zhou, K.-L., Lou, Y.-Y., & Shi, J.-H. (2019). Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 212, 15–24. https://doi.org/10.1016/j.saa.2018.12.040
  • Wani, T. A., Bakheit, A. H., Abounassif, M. A., & Zargar, S. (2018). Study of interactions of an anticancer drug neratinib with bovine serum albumin: Spectroscopic and molecular docking approach. Frontiers in Chemistry, 6, 47. https://doi.org/10.3389/fchem.2018.00047
  • Wani, T. A., Bakheit, A. H., Zargar, S., Hamidaddin, M. A., & Darwish, I. A. (2017). Spectrophotometric and molecular modelling studies on in vitro interaction of tyrosine kinase inhibitor linifanib with bovine serum albumin. PloS One, 12, e0176015. https://doi.org/10.1371/journal.pone.0176015
  • Wei, J., Xu, D., Zhang, X., Yang, J., Wang, Q., et. al. (2018). Evaluation of anthocyanins in Aronia melanocarpa/BSA binding by spectroscopic studies. AMB Express, 8(1), 72. https://doi.org/10.1186/s13568-018-0604-5
  • Yallur, B. C., Umesha, K., Murali Krishna, P., & Manjunatha, D. H. (2019). BSA binding and antibacterial studies of newly synthesized 5,6-Dihydroimidazo[2,1-b]thiazole-2-carbaldehyde. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 222, 117192. https://doi.org/10.1016/j.saa.2019.117192
  • Yiwen, S., Pengju, D., Xingxing, L., Pengfei, X., Zhengfang, Q., Shuting, F., & Zexuan, Z. (2018). Quantitative characterization of bovine serum albumin thin-films using terahertz spectroscopy and machine learning methods. Biomedical Optics Express, 9, 313259. https://doi.org/10.1364/BOE.9.002917
  • Yuan, L., Cao, Y., Luo, Q., Yang, W., Wu, X., Yang, X., Wu, D., Tan, S., Qin, G., Zhou, J., Zeng, Y., Chen, X., Tao, X., Zhang, Q., et. al. (2018). Pullulan-based nanoparticle-® complex formation and drug release influenced by surface charge. Nanoscale Research Letters, 13(1), 317., https://doi.org/10.1186/s11671-018-2729-5
  • Zare, M., Namratha, K., Alghamdi, S., et al. (2019). Novel green biomimetic approach for synthesis of ZnO-Ag nanocomposite; antimicrobial activity against food-borne pathogen, biocompatibility and solar photocatalysis. Scientific Reports, 9, 8303. https://doi.org/10.1038/s41598-019-44309-w
  • Zhang, H.-M., Cao, J., Tang, B.-P., & Wang, Y.-Q. (2014). Effect of TiO2 nanoparticles on the structure and activity of catalase. Chemico-Biological Interactions, 219, 168–174. https://doi.org/10.1016/j.cbi.2014.06.005
  • Žūkienė, R., & Snitka, V. (2015). Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro. Colloids and Surfaces B Biointerfaces, 1, 316–323. https://doi.org/10.1016/j.colsurfb.2015.07.054

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.