342
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease

, , , &
Pages 435-444 | Received 17 Oct 2020, Accepted 11 Nov 2021, Published online: 25 Nov 2021

References

  • Awoonor-Williams, A., Walsh, A. G., & Rowley, C. N. (2017). Modeling covalent-modifier drugs. Biochimica et Biophysica Acta. Proteins and Proteomics, 1865(11 Pt B), 1664–1675. https://doi.org/10.1016/j.bbapap.2017.05.009
  • Backman, T. W., Cao, Y., & Girke, T. (2011). ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Research, 39(Web Server Issue), W486–91. https://doi.org/10.1093/nar/gkr320
  • Balkrishna, A., Pokhrel, S., & Varshney, A. (2020). Tinocordiside from Tinospora cordifolia (Giloy) May curb SARS-CoV-2 contagion by disrupting the electrostatic interactions between host ACE2 and viral S-protein receptor binding domain. Combinatorial Chemistry and High Throughput Screening, 24(10), 1795-1802. https://doi.org/10.2174/1386207323666201110152615
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhasin, M. (2012). Ocimum—Taxonomy, medicinal potentialities and economic value of essential oil. Journal of Biosphere, 1, 48–50.
  • Bianco, G., Forli, S., Goodsell, D. S., & Olson, A. J. (2016). Covalent docking using Autodock: Two-point attractor and flexible side chain methods. Protein Science : a Publication of the Protein Society, 25(1), 295–301.
  • Brahmbhatt, R. V. (2021). Herbal medicines in management and prevention of Coronavirus Disease 2019 (COVID-19): A research. American Journal of Phytomedicine and Clinical Therapeutics, 9, 3.
  • Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure (London, England: 1993), 7(3), R55–R60. https://doi.org/10.1016/S0969-2126(99)80033-1
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35(Web Server Issue), W522–W525.
  • Ewald, P. (1921). Die Berechnung optischer und elektrostatischergitterpotentiale. Annalen Der Physik, 369(3), 253–287. https://doi.org/10.1002/andp.19213690304
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 39(12), 4362–4374. https://doi.org/10.1080/07391102.2020.1779818
  • Ghosh, A., Samanta, I., Mondal, A., & Liu, W. R. (2019). Covalent inhibition in drug discovery. ChemMedChem, 14(9), 889–906. https://doi.org/10.1002/cmdc.201900107
  • Hopkins, A. L., Keseru, G. M., Leeson, P. D., Rees, D. C., & Reynolds, C. H. (2014). The role of ligand efficiency matrics in drug discovery. Nature Reviews Drug Discovery, 13(2), 105–121. https://doi.org/10.1038/nrd4163
  • Ichiye, T., & Karplus, M. (1991). Collective motions in proteins-a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins: Structure, Function, and Genetics, 11(3), 205–217. https://doi.org/10.1002/prot.340110305
  • Jackson, P. A., John, C., Widen, J. C., Harki, D. A., & Brummond, K. M. (2017). Covalent modifiers: a chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-Michael addition reactions. Journal of Medicinal Chemistry, 60(3), 839–885.
  • Jia, Z., & Gong, W. (2021). Will mutations in the spike protein of SARS-CoV-2 lead to the failure of COVID-19 vaccines? Journal of Korean Medical Science, 36(18), e124.
  • Jo, S., Kim, S., Shin, H. D., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151.
  • Krieger, E., & Vriend, G. (2014). YASARA view – Molecular graphics for all devices – From smartphones to workstations. Bioinformatics (Oxford, England), 30(20), 2981–2982.
  • Kumar, A. (2020). Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets. Research Square, Preprint, May 07, https://doi.org/10.21203/rs.3.rs-27151/v1
  • Mazzei, L., Cianci, M., Musiani, F., Lente, G., Palombo, M., & Ciurli, S. (2017). Inactivation of urease by catechol: Kinetics and structure. Journal of Inorganic Biochemistry, 166, 182–189.
  • Mondal, S., Mirdha, B. R., & Mahapatra, S. C. (2009). The science behind sacredness of Tulsi (Ocimum sanctum Linn.). Indian Journal of Physiology and Pharmacology, 53(4), 291–306. l
  • Mondal, S., Varma, S., Bamola, V. D., Naik, S. N., Mirdha, B. R., Padhi, M. M., Mehta, N., & Mahapatra, S. C. (2011). Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. Journal of Ethnopharmacology, 136(3), 452–456.
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Pan, Y., Gao, D., & Zhan, C.-G. (2008). Modeling the catalysis of anti-cocaine catalytic antibody: Competing reaction pathways and free energy barriers. Journal of the American Chemical Society, 130(15), 5140–5149. https://doi.org/10.1021/ja077972s
  • Raha, K., & Merz, K. M. (2005). Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. Journal of Medicinal Chemistry, 48(14), 4558–4575. https://doi.org/10.1021/jm048973n
  • Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2020). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – A molecular docking study. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1810778
  • Sotriffer, C. (2018). Docking of covalent ligands: Challenges and approaches. Molecular Informatics, 37(9–10), 1800062. https://doi.org/10.1002/minf.201800062
  • Su, H., Yao, S., Zhao, W., Zhang, Y., Liu, J., Shao, Q., Wang, Q., Li, M., Xie, H., Shang, W., Ke, C., Feng, L., Jiang, X., Shen, J., Xiao, G., Jiang, H., Zhang, L., Ye, Y., & Xu, Y. (2021). Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nature Communications, 12(1), 3623.
  • Swaminathan, S., Harte, W. E., & Beveridge, D. L. (1991). Investigation of domain structure in proteins via molecular dynamics simulation: Application to HIV-1 protease dimer. Journal of the American Chemical Society, 113(7), 2717–2721. https://doi.org/10.1021/ja00007a054
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Tuley, A., & Fast, W. (2018). The taxonomy of covalent inhibitors. Biochemistry, 57(24), 3326–3337.
  • Varshney, K., Varshney, M., & Nath, B. (2020). Molecular modeling of isolated phytochemicals from Ocimum sanctum towards exploring potential inhibitors of SARS coronavirus main protease and papain-like protease to treat COVID-19. Preprints, 98, 1.
  • Weber, S., Ramirez, C. M., Weiser, B., Burger, H., & Doerfler, W. (2021). SARS-CoV-2 worldwide replication drives rapid rise and selection of mutations across the viral genome: a time-course study – Potential challenge for vaccines and therapies. EMBO Molecular Medicine, 13(6), e14062. https://doi.org/10.15252/emmm.202114062
  • Wu, Y., Ho, W., Huang, Y., Jin, D.-Y., Li, S., Liu, S.-L., Liu, X., Qiu, J., Sang, Y., Wang, Q., Yuen, K.-Y., & Zheng, Z.-M. (2020). SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet (London, England), 395(10228), 949–950.
  • Yang, J. F., Wang, F., Chen, Y.-Z., Hao, G.-F., & Yang, G.-F. (2020). LARMD: integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Briefings in Bioinformatics, 21(6), 2206–2218. https://doi.org/10.1093/bib/bbz141
  • Zahran, E. M., Abdelmohsen, U. R., Khalil, H. E., Desoukey, S. Y., Fouad, M. A., & Kamel, M. S. (2020). Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochemistry Reviews, 19(4), 907–953. https://doi.org/10.1007/s11101-020-09690-9
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.