225
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Biologically active oxovanadium(IV) Schiff base metal complex: antibacterial, antioxidant, biomolecular interaction and molecular docking studies

, , &
Pages 599-610 | Received 19 Sep 2021, Accepted 17 Nov 2021, Published online: 10 Dec 2021

References

  • Abyar, F., & Tabrizi, L. (2020). Experimental and theoretical investigations of novel oxidovanadium(IV) juglone complex: DNA/HSA interaction and cytotoxic activity. Journal of Biomolecular Structure & Dynamics, 38(2), 474–487. https://doi.org/10.1080/07391102.2019.1580221
  • Adam, M. S. S., & Elsawy, H. (2018). Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction. Journal of Photochemistry and Photobiology. B, Biology, 184, 34–43. https://doi.org/10.1016/j.jphotobiol.2018.05.002
  • Ahanger, I. A., Parray, Z. A., Nasreen, K., Ahmad, F., Hassan, M. I., Islam, A., & Sharma, A. (2021). Heparin accelerates the protein aggregation via the downhill polymerization mechanism: Multi-spectroscopic studies to delineate the implications on proteinopathies. ACS Omega, 6(3), 2328–2339. https://doi.org/10.1021/acsomega.0c05638
  • Anacona, J. R., Ruiz, K., Lorono, M., & Celis, F. (2019). Antibacterial activity of transition metal complexes containing a tridentate NNO phenoxymethylpenicillin-based Schiff base. An anti‐MRSA iron (II) complex. Applied Organometallic Chemistry, 33(4), e4744. https://doi.org/10.1002/aoc.4744
  • Asadpour, S., Boroujeni, Z. A., & Jahani, S. (2020). In vitro anticancer activity of parent and nanoencapsulated samarium(III) complex towards antimicrobial activity studies and FS-DNA/BSA binding affinity. RSC Advances, 10(53), 31979–31990. https://doi.org/10.1039/D0RA05280A
  • Asha, R. N., Nayagam, B. R. D., & Bhuvanesh, N. (2021). Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2. Bioorganic Chemistry, 112, 104967. https://doi.org/10.1016/j.bioorg.2021.104967
  • Azam, A., Raza, M. A., & Sumrra, S. H. (2018). Therapeutic application of zinc and vanadium complexes against diabetes mellitus a coronary disease: A review. Open Chemistry, 16(1), 1153–1165. https://doi.org/10.1515/chem-2018-0118
  • Balakrishnan, C., Theetharappan, M., Kowsalya, P., Natarajan, S., Neelakantan, M. A., & Mariappan, S. S. (2017). Biocatalysis, DNA–protein interactions, cytotoxicity and moleculardocking of Cu(II), Ni(II), Zn(II) and V(IV) Schiff base complexes. Applied Organometallic Chemistry, 31 (11), e3776. https://doi.org/10.1002/aoc.3776
  • Barfeie, H., Grivani, G., Eigner, V., Dusek, M., & Khalaji, A. D. (2018). Copper(II), nickel(II), zinc(II) and vanadium(IV) Schiff base complexes: Synthesis, characterization, crystal structure determination, and thermal studies. Polyhedron, 146, 19–25. https://doi.org/10.1016/j.poly.2018.02.012
  • Beigi, Z., Kianfar, A. H., Farrokhpour, H., Roushani, M., Azarian, M. H., & Mahmood, W. A. K. (2018). Synthesis, characterization and spectroscopic studies of nickel (II) complexes with sometridentate ONN donor Schiff bases and their electrocatalytic application for oxidation of methanol. Journal of Molecular Liquids, 249, 117–125. https://doi.org/10.1016/j.molliq.2017.10.131
  • Berhanu, A. L., Gaurav, Mohiuddin, I., Malik, A. K., Aulakh, J. S., Kumar, V., & Kim, K. H. (2019). A review of the applications of Schiff bases as optical chemical sensors. Trends in Analytical Chemistry, 116, 74–91. https://doi.org/10.1016/j.trac.2019.04.025
  • Bischoff, G., & Hoffmann, S. (2002). DNA-binding of drugs used in medicinal therapies. Current Medicinal Chemistry, 9(3), 321–348. https://doi.org/10.2174/0929867023371085
  • Claudel, M., Schwarte, J. V., & Fromm, K. M. (2020). New antimicrobial strategies based on metal complexes. Chemistry, 2(4), 849–899. https://doi.org/10.3390/chemistry2040056
  • Crans, D. C., Smee, J. J., Gaidamauskas, E., & Yang, L. (2004). The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chemical Reviews, 104(2), 849–902. https://doi.org/10.1021/cr020607t
  • Das, M., Mukherjee, S., Koley, B., Choudhuri, I., Bhattacharyya, N., Roy, P., Samanta, B. C., Barai, M., & Maity, T. (2020). Developing novel Zinc(II) and copper(II) Schiff base complexes: Combined experimental and theoretical investigation on their DNA/protein binding study and anticancer activity. New Journal of Chemistry, 44(42), 18347–18361. https://doi.org/10.1039/D0NJ03844J
  • Dekar, S., Ouari, K., Bendia, S., Hannachi, D., & Weiss, J. (2018). Mononuclear oxovanadium(IV) Schiff base complex: Synthesis, spectroscopy, electrochemistry, DFT calculation and catalytic activity. Journal of Organometallic Chemistry, 866, 165–176. https://doi.org/10.1016/j.jorganchem.2018.04.015
  • Dief, A. M. A., & Mohamed, I. M. A. (2015). A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef University Journal of Basic and Applied Sciences, 4(2), 119–133. https://doi.org/10.1016/j.bjbas.2015.05.004
  • Elsayed, S. A., Noufal, A. M., & El-Hendawy, A. M. (2017). Synthesis, structural characterization and antioxidant activity of some vanadium(IV), Mo(VI)/(IV) and Ru(II) complexes of pyridoxal Schiff base derivatives. Journal of Molecular Structure, 1144, 120–128. https://doi.org/10.1016/j.molstruc.2017.05.020
  • Gurusamy, S., Krishnaveni, K., Sankarganesh, M., Sathish, V., Thanasekaran, P., & Mathavan, A. (2021). Multiple target detection and binding properties of naphthalene-derived Schiff-base chemosensor. Journal of Molecular Liquids, 325, 115190. https://doi.org/10.1016/j.molliq.2020.115190
  • Gurusamy, S., Krishnaveni, K., Sankarganesh, M., Asha, R. N., & Mathavan, A. (2021). Synthesis, characterization, DNA interaction, BSA/HSA binding activities of VO(IV), Cu(II) and Zn(II) Schiff base complexes and its molecular docking with biomolecules. Journal of Molecular Liquids, 2021, 117045. https://doi.org/10.1016/j.molliq.2021.117045
  • Hameed, A., Rashida, M., Uroos, M., Abid Ali, S., & Khan, K. M. (2017). Schiff bases in medicinal chemistry: A patent review (2010–2015). Expert Opinion on Therapeutic Patents, 27(1), 63–79. https://doi.org/10.1080/13543776.2017.1252752
  • Heydari, A., & Torshizi, H. M. (2016). Design, synthesis, characterization, cytotoxicity, molecular docking and analysis of binding interactions of novel acetylacetonatopalladium(II) alanine and valine complexes with CT-DNA and BSA. RSC Advances, 6(98), 96121–96137. https://doi.org/10.1039/C6RA18803F
  • Jia, Y., & Li, J. (2015). Molecular assembly of Schiff base interactions: Construction and application. Chemical Reviews, 115(3), 1597–1621. https://doi.org/10.1021/cr400559g
  • Kalaivanan, C., Sankarganesh, M., Suvaikin, M. Y., Karthi, G. B., Gurusamy, S., Subramanian, R., & Asha, R. N. (2020). Novel Cu(II) and Ni(II) complexes of nicotinamide based Mannich base: Synthesis, characterization, DFT calculation, DNA binding, molecular docking, antioxidant, antimicrobial activities. Journal of Molecular Liquids, 320, 114423. https://doi.org/10.1016/j.molliq.2020.114423
  • Khan, N. H., Pandya, N., Maity, N. C., Kumar, M., Patel, R. M., Kureshy, R. I., Abdi, S. H. R., Mishra, S., Das, S., & Bajaj, H. C. (2011). Influence of chirality of V(V) Schiff base complexes on DNA, BSA binding and cleavage activity. European Journal of Medicinal Chemistry, 46(10), 5074–5085. https://doi.org/10.1016/j.ejmech.2011.08.020
  • Kou, S. B., Lin, Z. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2021). Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure, 1224, 129024. https://doi.org/10.1016/j.molstruc.2020.129024
  • Kumar, G., Mogha, N. K., Kumar, M., Subodh, & Masram, D. T. (2020). NiO nanocomposites/rGO as a heterogeneous catalyst for imidazole scaffolds with applications in inhibiting the DNA binding activity. Dalton Transactions, 49, 1963–1974. https://doi.org/10.1039/c9dt04416g
  • Kumbar, N. S. S., Hosamani, K. M., Gouripur, G. C., & Joshi, S. D. (2018). Functionalization of 3 chloroformyl coumarin to coumarin Schiff bases using reusable catalyst: An approach to molecular docking and biological studies. Royal Society Open Science, 5(5), 172416. https://doi.org/10.1098/rsos.172416
  • Lakowicz, J. R. (2006). Introduction to fluorescence. Academic Press. https://doi.org/10.1007/978-0-387-46312-4-1
  • Larsen, M. T., Kuhlmann, M., Hvam, M. L., & Howard, K. A. (2016). Albumin-based drug delivery: Harnessing nature to cure disease. Molecular and Cellular Therapies, 4(3), 3. https://doi.org/10.1186/s40591-016-0048-8
  • Lever, A. B. P. (1984). Inorganic electronic spectroscopy. Springer.
  • Liu, C., Yang, W., Gao, Q., Du, J., Luo, H., Liu, Y., & Yang, C. (2018). Differential recognition and quantification of HSA and BSA based on two red-NIR fluorescent probes. Journal of Luminescence, 197, 193–199. https://doi.org/10.1016/j.jlumin.2018.01.021
  • Luo, X. Q., Liu, Q. R., Han, Y. J., & Xue, L. W. (2020). Vanadium complexes derived from fluoro-substituted Schiff bases: Synthesis, crystal structures, and antimicrobial activity. Inorganic and Nano-Metal Chemistry, 50(9), 836–841. https://doi.org/10.1080/24701556.2020.1726387
  • Manjubaashini, N., Kesavan, M. P., Jegathalaprathaban, R., & Thangadurai, T. D. (2018). Multispectroscopic and bioimaging approach for the interaction of rhodamine 6G capped gold nanoparticles with bovine serum albumin. Journal of Photochemistry and Photobiology. B, Biology, 183, 374–384. https://doi.org/10.1016/j.jphotobiol.2018.05.005
  • Manjunath, M., Kulkarni, A. D., Bagihalli, G. B., Malladi, S., & Patil, S. A. (2017). Bio-important antipyrine derived Schiff bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation. Journal of Molecular Structure, 1127, 314–321. https://doi.org/10.1016/j.molstruc.2016.07.123
  • Manojkumar, Y., Ambika, S., Arulkumar, R., Gowdhami, B., Balaji, P., Vignesh, G., Arunachalam, S., Venuvanalingam, P., Thirumurugan, R., & Akbarsha, M. A. (2019). Synthesis, DNA and BSA binding, in vitro anti-proliferative and in vivo anti-angiogenic properties of some cobalt(III) Schiff base complexes. New Journal of Chemistry, 43(28), 11391–11407. https://doi.org/10.1039/C9NJ01269A
  • Mathavan, A., Ramdass, A., & Rajagopal, S. (2015). A spectroscopy approach for the study of the interaction of oxovanadium (IV)-salen complexes with proteins. Journal of Fluorescence, 25(4), 1141–1149. https://doi.org/10.1007/s10895-015-1604-3
  • Mbugua, S. N., Sibuyi, N. R. S., Njenga, L. W., Odhiambo, R. A., Wandiga, S. O., Meyer, M., Lalancette, R. A., & Onani, M. O. (2020). New palladium (II) and platinum(II) complexes based on pyrrole Schiff bases: Synthesis, Characterization, X-ray structure, and anticancer activity. ACS Omega, 5(25), 14942–14954. https://doi.org/10.1021/acsomega.0c00360
  • Mjos, K. D., & Orvig, C. (2014). Metallodrugs in medicinal inorganic chemistry. Chemical Reviews, 114(8), 4540–4563. https://doi.org/10.1021/cr400460s
  • Mondal, A., Das, C., Corbella, M., Bauza, A., Frontera, A., Saha, M., Mondal, S., Saha, K. D., & Chattopadhyay, S. K. (2020). Biological promiscuity of a binuclear Cu(II) complex of amino guanidine Schiff base: DNA binding, anticancer activity and histidine sensing ability of the complex. New Journal of Chemistry, 44(18), 7319–7328. https://doi.org/10.1039/C9NJ05712A
  • Neethu, K. S., Jayanthi, E., Theetharappan, M., Bhuvanesh, S. P., Neelakantan, M. A., & Kaveri, M. V. (2019). Organoruthenium (II) complexes featuring pyrazole‐linked Schiff base ligands: Crystal structure, DNA/BSA interactions, cytotoxicity and molecular docking. Applied Organometallic Chemistry, 33(3), e4751. https://doi.org/10.1002/aoc.4751
  • Palanimurugan, A., & Kulandaisamy, A. (2018). DNA, in vitro antimicrobial/anticancer activities and biocidal based statistical analysis of Schiff base metal complexes derived from salicylalidene-4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one and 2-aminothiazole. Journal of Organometallic Chemistry, 861, 263–274. https://doi.org/10.1016/j.jorganchem.2018.02.051
  • Panchal, P. K., Pansuriya, P. B., & Patel, M. N. (2006). In-vitro biological evaluation of some ONS and NS donor Schiff’s bases and their metal complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 21(4), 453–458. https://doi.org/10.1080/14756360600628551
  • Panchal, P. K., Parekh, H. M., Pansuriya, P. B., & Patel, M. N. (2006). Bactericidal activity of different oxovanadium(IV) complexes with Schiff bases and application of chelation theory. Journal of Enzyme Inhibition and Medicinal Chemistry, 21(2), 203–209. https://doi.org/10.1080/14756360500535229
  • Paulpandiyan, R., & Raman, N. (2017). Oxovanadium(IV) complexes with Knoevenagel Schiff base condensate as impending chemotherapeutic agents: Synthesis, characterization, biological screening and anti-proliferative assay. Bioorganic Chemistry, 73, 100–108. https://doi.org/10.1016/j.bioorg.2017.06.008
  • Pernil, R., & Schleiff, E. (2019). Metalloproteins in the biology of heterocysts. Life, 9(2), 32. https://doi.org/10.3390/life9020032
  • Raman, N., & Selvan, A. (2011). DNA interaction, enhanced DNA photocleavage, electrochemistry, thermal investigation and biopotencial properties of new mixed-ligand complexes of Cu(II)/VO(IV) based on Schiff bases. Journal of Molecular Structure, 985(2–3), 173–183. https://doi.org/10.1016/j.molstruc.2010.10.038
  • Ray, A., Seth, B. K., Pal, U., & Basu, S. (2012). Nickel(II)-Schiff base complex recognizing domain II of bovine and human serum albumin: Spectroscopic and docking studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 92, 164–174. https://doi.org/10.1016/j.saa.2012.02.060
  • Rehder, D. (2012). The potentiality of vanadium in medicinal applications. Future Medicinal Chemistry, 4(14), 1823–1837. https://doi.org/10.4155/fmc.12.103
  • Rehder, D. (2013). The future of/for vanadium. Dalton Transactions (Cambridge, England : 2003), 42(33), 11749–11761. https://doi.org/10.1039/c3dt50457c
  • Said, M. A., Unizi, A. A., Mamary, M. A., Alzahrani, S., & Lentz, D. (2020). Easy coordinate geometry indexes, τ4 and τ5 and HSA study for unsymmetrical Pd(II), Fe(II), Zn(II), Mn(II), Cu(II) and VO(IV) complexes of a tetradentate ligand: Synthesis, characterization, properties, and antioxidant activities. Inorganica Chimica Acta, 505, 119434. https://doi.org/10.1016/j.ica.2020.119434
  • Saleem, S. S., Sankarganesh, M., Jose, P. A., & Raja, J. D. (2021). Design, synthesis, antioxidant, antimicrobial, DNA binding and molecular docking studies of morpholine based Schiff base ligand and its metal(II) complexes. Inorganic Chemistry Communications, 124, 108396. https://doi.org/10.1016/j.inoche.2020.108396
  • Sankarganesh, M., Jose, P. A., Raja, J. D., Solomon, R. V., Sheela, C. D., & Gurusamy, S. (2021). Bioactive platinum complex of ligand bearing pyrimidine skeleton: DNA/BSA binding, molecular docking, anticancer, antioxidant and antimicrobial activities. Journal of Biomolecular Structure and Dynamics, 2021, 1–14. https://doi.org/10.1080/07391102.2021.1889667
  • Sankareswari, V. G., Vinod, D., Mahalakshmi, A., Alamelu, M., Kumaresan, G., Ramaraj, R., & Rajagopal, S. (2014). Interaction of oxovanadium(IV)–salphen complexes with bovine serum albumin and their cytotoxicity against cancer. Dalton Transactions, 43, 260–272. https://doi.org/10.1039/c3dt52505h
  • Sedighipoor, M., Kianfar, A. H., Mohammadnezhad, G., Gorls, H., Plass, W., Borojeni, A. A. M., & Abdollahi, E. (2019). Synthesis, crystal structure of novel unsymmetrical heterocyclic Schiff base Ni(II)/V(IV) complexes: Investigation of DNA binding, protein binding and in vitro cytotoxic activity. Inorganica Chimica Acta, 488, 182–194. https://doi.org/10.1016/j.ica.2018.12.051
  • Siddiqui, S., Ameen, F., Rehman, S., Sarwar, T., & Tabish, M. (2021). Studying the interaction of drug/ligand with serum albumin. Journal of Molecular Liquids, 336, 116200. https://doi.org/10.1016/j.molliq.2021.116200
  • Simon, D., Chang, C. H., Chen, C. L., Mathavan, A., Ramdass, A., Sathish, V., Thanasekaran, P., Li, W. S., & Rajagopal, S. (2018). Aggregation-induced emission enhancement of anthracene-derived Schiff base compounds and their application as a sensor for bovine serum albumin and optical cell imaging. Luminescence, 33 (4), 780–789. https://doi.org/10.1002/bio.3477
  • Sharma, D., Revanasiddappa, H. D., & Jayalakshmi, B. (2020). DNA binding, BSA interaction and in-vitro antimicrobial studies of Cu(II), Co(III), Ni(II) and VO(IV) complexes with a new Schiff base. Egyptian Journal of Basic and Applied Sciences, 7(1), 323–341. https://doi.org/10.1080/2314808X.2020.1758890
  • Szklarzewicz, J., Jurowska, A., Hodorowicz, M., Gryboś, R., Kruczała, K., Głuch-Lutwin, M., & Kazek, G. (2020). Vanadium complexes with salicylaldehyde-based Schiff base ligands structure, properties and biological activity. Journal of Coordination Chemistry, 73(6), 986–1008. https://doi.org/10.1080/00958972.2020.1755036
  • Tabassum, S., Amir, S., Arjmand, F., Pettinari, C., Marchetti, F., Masciocchi, N., Lupidi, G., & Pettinari, R. (2013). Mixed-ligand Cu(II)-vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. European Journal of Medicinal Chemistry, 60, 216–232. https://doi.org/10.1016/j.ejmech.2012.08.019
  • Tanzadehpanah, H., Mahaki, H., Moghadam, N. H., Salehzadeh, S., Rajabi, O., Najafi, R., Amini, R., & Saidijam, M. (2019). Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. Journal of Biomolecular Structure & Dynamics, 37(4), 823–836. https://doi.org/10.1080/07391102.2018.1441073
  • Venkateswarlu, K., Ganji, N., Daravath, S., Kanneboina, K., Rangan, K. & Shivaraj, (2019). Crystal structure, DNA interactions, antioxidant and antitumor activityof thermally stable Cu(II), Ni(II) and Co(III) complexes of an N,O donor Schiff base ligand. Polyhedron, 171, 86–97. https://doi.org/10.1016/j.poly.2019.06.048
  • Wang, L. H., Qiu, X. Y., & Liu, S. J. (2019). Synthesis, characterization and crystal structures of copper(II), zinc(II) and vanadium(V) complexes, derived from 3-methyl-N′-(1-(pyridin-2-yl)ethylidene)benzohydrazide, with antibacterial activity. Journal of Coordination Chemistry, 72(5–7), 962–971. https://doi.org/10.1080/00958972.2019.1590561
  • Wang, Q., Huang, C. R., Jiang, M., Zhu, Y. Y., Wang, J., Chen, J., & Shi, J. H. (2016). Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 156, 155–163. https://doi.org/10.1016/j.saa.2015.12.003
  • Wang, B. L., Pan, D. Q., Zhou, K. L., Lou, Y. Y., & Shi, J. H. (2019). Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 212, 15–24. https://doi.org/10.1016/j.saa.2018.12.040
  • Wang, B. L., Kou, S. B., Lin, Z. L., & Shi, J. H. (2020). Investigation on the binding behavior between BSA and lenvatinib with the help of various spectroscopic and in silico methods. Journal of Molecular Structure, 1204, 127521. https://doi.org/10.1016/j.molstruc.2019.127521
  • Wazalwar, S. S., & Bhave, N. S. (2012). Microwave assisted synthesis and antioxidant activity of vanadium (IV) complexes of amino acid Schiff bases. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42(8), 1098–1104. https://doi.org/10.1080/15533174.2012.680100
  • Wei, Q., Dong, J., Zhao, P., Li, M., Cheng, F., Kong, J., & Li, L. (2016). DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands. Journal of Photochemistry and Photobiology. B, Biology, 161, 355–367. https://doi.org/10.1016/j.jphotobiol.2016.03.053
  • Wu, A. Z., Lin, C. Z., Zhai, Y. J., Zhuo, J. L., & Zhu, C. C. (2013). Investigation of the interaction between two phenylethanoid glycosides and bovine serum albumin by spectroscopic methods. Journal of Pharmaceutical Analysis, 3(1), 61–65. https://doi.org/10.1016/j.jpha.2012.07.001
  • Zampakou, M., Balala, S., Perdih, F., Kalogiannis, S., Turel, I., & Psomas, G. (2015). Structure, antimicrobial activity, albumin- and DNA-binding of manganese(ii)–sparfloxacinato complexes. RSC Advances, 5(16), 11861–11872. https://doi.org/10.1039/C4RA11682H
  • Zhang, Y. F., Zhou, K. L., Lou, Y. Y., Pan, D. Q., & Shi, J. H. (2017). Investigation of the binding interaction between estazolam and bovine serum albumin: Multi-spectroscopic methods and molecular docking technique. Journal of Biomolecular Structure & Dynamics, 35(16), 3605–3614. https://doi.org/10.1080/07391102.2016.1264889
  • Zianna, A., Psomas, G., Hatzidimitriou, A., & Kantouri, M. L. (2015). Copper(II) complexes of salicylaldehydes and 2-hydroxyphenones: Synthesis, structure, thermal decomposition study and interaction with calfthymus DNA and albumins. RSC Advances, 5(47), 37495–37511. https://doi.org/10.1039/C4RA16484A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.