259
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design of a protein-targeted DNA aptamer using atomistic simulation

&
Pages 672-680 | Received 05 Jul 2021, Accepted 22 Nov 2021, Published online: 11 Dec 2021

References

  • Abeydeera, N. D., Egli, M., Cox, N., Mercier, K., Conde, J. N., Pallan, P. S., Mizurini, D. M., Sierant, M., Hibti, F.-E., Hassell, T., Wang, T., Liu, F.-W., Liu, H.-M., Martinez, C., Sood, A. K., Lybrand, T. P., Frydman, C., Monteiro, R. Q., Gomer, R. H., Nawrot, B., & Yang, X. (2016). Evoking picomolar binding in RNA by a single phosphorodithioate linkage. Nucleic Acids Research, 44(17), 8052–8064. https://doi.org/10.1093/nar/gkw725
  • Anderson, P. C., & Mecozzi, S. (2005). Unusually short RNA sequences: Design of a 13-mer RNA that selectively binds and recognizes theophylline. Journal of the American Chemical Society, 127(15), 5290–5291. https://doi.org/10.1021/ja0432463
  • Bauer, M., Strom, M., Hammond, D. S., & Shigdar, S. (2019). Anything you can do, I can do better: Can aptamers replace antibodies in clinical diagnostic applications? Molecules, 24(23), 4377. https://doi.org/10.3390/molecules24234377
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Billova, S., Kizek, R., & Palecek, E. (2002). Differential pulse adsorptive stripping voltammetry of osmium-modified peptides. Bioelectrochemistry, 56(1-2), 63–66. https://doi.org/10.1016/S1567-5394(02)00008-7
  • Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355(6360), 564–566. https://doi.org/10.1038/355564a0
  • Boese, B. J., & Breaker, R. R. (2007). In vitro selection and characterization of cellulose-binding DNA aptamers. Nucleic Acids Research, 35(19), 6378–6388. https://doi.org/10.1093/nar/gkm708
  • Boiziau, C., Dausse, E., Yurchenko, L., & Toulme, J. J. (1999). DNA aptamers selected against the HIV-1 trans-activation-responsive RNA element form RNA-DNA kissing complexes. The Journal of Biological Chemistry, 274(18), 12730–12737. https://doi.org/10.1074/jbc.274.18.12730
  • Chen, A. A., & García, A. E. (2013). High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 16820–16825. https://doi.org/10.1073/pnas.1309392110
  • Cornell, W. D., Cieplak, P., Bayly, C. I., & Kollman, P. A. (1993). Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. Journal of the American Chemical Society, 115(21), 9620–9631. https://doi.org/10.1021/ja00074a030
  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117(19), 5179–5197. https://doi.org/10.1021/ja00124a002
  • Cox, J. C., & Ellington, A. D. (2001). Automated selection of anti-protein aptamers. Bioorganic & Medicinal Chemistry, 9(10), 2525–2531. https://doi.org/10.1016/s0968-0896(01)00028-1
  • Darden, T., York, D., & L, P. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Deetz, J. S., & Behrman, E. J. (1980). Kinetics of the reaction of some tryptophan derivatives with the osmium tetraoxide-pyridine reagent. The Journal of Organic Chemistry, 45(1), 135–140. https://doi.org/10.1021/jo01289a026
  • Deetz, J. S., & Behrman, E. J. (1981). Reaction of osmium reagents with amino acids and proteins. Reactivity of amino acid residues and peptide bond cleavage. International Journal of Peptide and Protein Research, 17(4), 495–500. https://doi.org/10.1111/j.1399-3011.1981.tb02019.x
  • Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., Li, X.-F., & Le, X. C. (2014). Aptamer binding assays for proteins: The thrombin example-a review. Analytica Chimica Acta, 837, 1–15. https://doi.org/10.1016/j.aca.2014.04.055
  • Diamandis, E. P., & Christopoulos, T. K. (1991). The biotin-(strept)avidin system: Principles and applications in biotechnology. Clinical Chemistry, 37(5), 625–636. https://doi.org/10.1093/clinchem/37.5.625
  • Dierckx, A., Dinér, P., El-Sagheer, A. H., Kumar, J. D., Brown, T., Grøtli, M., & Wilhelmsson, L. M. (2011). Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA. Nucleic Acids Research, 39(10), 4513–4524. https://doi.org/10.1093/nar/gkr010
  • Duclair, S., Gautam, A., Ellington, A., & Prasad, V. R. (2015). High-affinity RNA aptamers against the HIV-1 protease inhibit both in vitro protease activity and late events of viral replication. Molecular Therapy. Nucleic Acids, 4(2), e228. https://doi.org/10.1038/mtna.2015.1
  • Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., & Cieplak, P. (2010). The R.E.D. tools: Advances in RESP and ESP charge derivation and force field library building. Physical Chemistry Chemical Physics, 12(28), 7821–7839. https://doi.org/10.1039/c0cp00111b
  • Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818–822. https://doi.org/10.1038/346818a0
  • Engvall, E., & Perlmann, P. (1971). Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 8(9), 871–874. https://doi.org/10.1016/0019-2791(71)90454-x
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Flyvbjerg, H., & Petersen, H. G. (1989). Error estimates on averages of correlated data. The Journal of Chemical Physics, 91(1), 461–466. https://doi.org/10.1063/1.457480
  • Fojta, M., Billová, S., Havran, L., Pivonková, H., Cernocká, H., Horáková, P., & Palecek, E. (2008). Osmium tetroxide, 2,2'-bipyridine: Electroactive marker for probing accessibility of tryptophan residues in proteins. Analytical Chemistry, 80(12), 4598–4605. https://doi.org/10.1021/ac800527u
  • Galagedera, S. K. K., Huynh, L., Wachholz, F., Jacobsen, M., Haruehanroengra, P., Sheng, J., Chen, A. A., & Flechsig, G. ‐U. (2018). Voltammetric detection of thrombin by labeling with osmium tetroxide bipyridine and binding with aptamers on a gold electrode. Electroanalysis, 30(3), 398–401. https://doi.org/10.1002/elan.201700734
  • Grossfield, A. WHAM: The weighted histogram analysis method. Accessed December 5, 2021, http://membrane.urmc.rochester.edu/content/wham.
  • Han, J., Gao, L., Wang, J., & Wang, J. (2020). Application and development of aptamer in cancer: From clinical diagnosis to cancer therapy. Journal of Cancer, 11(23), 6902–6915. https://doi.org/10.7150/jca.49532
  • Hao, L., & Zhao, Q. (2015). A fluorescein labeled aptamer switch for thrombin with fluorescence decrease response. Analytical Methods, 7(9), 3888–3892. https://doi.org/10.1039/C5AY00464K
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Janas, T., Widmann, J. J., Knight, R., & Yarus, M. (2010). Simple, recurring RNA binding sites for L-arginine. RNA, 16(4), 805–816. https://doi.org/10.1261/rna.1979410
  • Jayasena, S. D. (1999). Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 45 (9), 1628–1650. https://doi.org/10.1093/clinchem/45.9.1628
  • Jo, H., & Ban, C. (2016). Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools. Experimental & Molecular Medicine, 48, e230. https://doi.org/10.1038/emm.2016.44
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kaur, H., Bruno, J. G., Kumar, A., & Sharma, T. K. (2018). Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 8(15), 4016–4032. https://doi.org/10.7150/thno.25958
  • Kaur, H., Chaterjee, B., Bruno, J. G., & Sharma, T. K. (2020). Defining target product profiles (TPPs) for aptamer-based diagnostics. Advances in Biochemical Engineering/Biotechnology, 174, 195–209. https://doi.org/10.1007/10_2019_104
  • Khvorova, A., Kwak, Y. G., Tamkun, M., Majerfeld, I., & Yarus, M. (1999). RNAs that bind and change the permeability of phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 96(19), 10649–10654. https://doi.org/10.1073/pnas.96.19.10649
  • Krauss, I. R., Pica, A., Merlino, A., Mazzarella, L., & Sica, F. (2013). Duplex-quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer. Acta Crystallographica. Section D, Biological Crystallography, 69(Pt 12), 2403–2411. https://doi.org/10.1107/S0907444913022269
  • Krivov, G. G., Shapovalov, M. V., & Dunbrack, R. L., Jr.(2009). Improved prediction of protein side-chain conformations with SCWRL4. Proteins, 77(4), 778–795. https://doi.org/10.1002/prot.22488
  • Kumar, P. K., Hussain, B., & Yüce, M. (2020). Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics, 12(7), 646. https://doi.org/10.3390/pharmaceutics12070646
  • Kumar, S., R, J., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011–1021. https://doi.org/10.1002/jcc.540130812
  • Li, Q., Maier, S. H., Li, P., Peterhansl, J., Belka, C., Mayerle, J., & Mahajan, U. M. (2020). Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma. Radiation Oncology (London, England), 15(1), 189. https://doi.org/10.1186/s13014-020-01624-1
  • Lorsch, J. R., & Szostak, J. W. (1994). In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry, 33(4), 973–982. https://doi.org/10.1021/bi00170a016
  • Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A., & Feigon, J. (1993). Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3745–3749. https://doi.org/10.1073/pnas.90.8.3745
  • Martino, L., Virno, A., Randazzo, A., Virgilio, A., Esposito, V., Giancola, C., Bucci, M., Cirino, G., & Mayol, L. (2006). A new modified thrombin binding aptamer containing a 5'-5' inversion of polarity site. Nucleic Acids Research, 34(22), 6653–6662. https://doi.org/10.1093/nar/gkl915
  • Mayer, G., & Höver, T. (2009). In vitro selection of ssDNA aptamers using biotinylated target proteins. Methods in Molecular Biology, 535, 19–32.
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Mobley, D. L., Chodera, J. D., & Dill, K. A. (2007). The confine-and-release method: Obtaining correct binding free energies in the presence of protein conformational change. Journal of Chemical Theory and Computation, 3(4), 1231–1235. https://doi.org/10.1021/ct700032n
  • Mondragón, E., & Maher, L. J. I. (2016). Anti-transcription factor RNA aptamers as potential therapeutics. Nucleic Acid Therapeutics, 26(1), 29–43. https://doi.org/10.1089/nat.2015.0566
  • Nahvi, A., Sudarsan, N., Ebert, M. S., Zou, X., Brown, K. L., & Breaker, R. R. (2002). Genetic control by a metabolite binding mRNA. Chemistry & Biology, 9(9), 1043. https://doi.org/10.1016/s1074-5521(02)00224-7
  • Neale, C., Madill, C., Rauscher, S., & Pomes, R. (2013). Accelerating convergence in molecular dynamics simulations of solutes in lipid membranes by conducting a random walk along the bilayer normal. Journal of Chemical Theory and Computation, 9(8), 3686–3703. https://doi.org/10.1021/ct301005b
  • Olmsted, I. R., Xiao, Y., Cho, M., Csordas, A. T., Sheehan, J. H., Meiler, J., Soh, H. T., & Bornhop, D. J. (2011). Measurement of aptamer-protein interactions with back-scattering interferometry. Analytical Chemistry, 83(23), 8867–8870. https://doi.org/10.1021/ac202823m
  • Orava, E. W., Cicmil, N., & Gariépy, J. (2010). Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochimica et Biophysica Acta, 1798(12), 2190–2200. https://doi.org/10.1016/j.bbamem.2010.02.004
  • Padmanabhan, K., Padmanabhan, K. P., Ferrara, J. D., Sadler, J. E., & Tulinsky, A. (1993). The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. The Journal of Biological Chemistry, 268(24), 17651–17654. https://doi.org/10.2210/pdb1hut/pdb
  • Rauscher, S., Neale, C., & Pomes, R. (2009). Simulated tempering distributed replica sampling, virtual replica exchange, and other generalized-ensemble methods for conformational sampling. Journal of Chemical Theory and Computation, 5(10), 2640–2662. https://doi.org/10.1021/ct900302n
  • Schlecht, U., Malave, A., Gronewold, T., Tewes, M., & Lohndorf, M. (2006). Comparison of antibody and aptamer receptors for the specific detection of thrombin with a nanometer gap-sized impedance biosensor. Analytica Chimica Acta, 573-574, 65–68. https://doi.org/10.1016/j.aca.2006.01.016
  • Soto, C. S., Fasnacht, M., Zhu, J., Forrest, L., & Honig, B. (2008). Loop modeling: Sampling, filtering, and scoring. Proteins, 70(3), 834–843. https://doi.org/10.1002/prot.21612
  • Soukup, G. A., Ellington, A. D., & Maher, J. L. I. (1996). Selection of RNAs that bind to duplex DNA at neutral pH. Journal of Molecular Biology, 259(2), 216–228. https://doi.org/10.1006/jmbi.1996.0314
  • Sun, W., Du, L., & Li, M. (2010). Aptamer-based carbohydrate recognition. Current Pharmaceutical Design, 16(20), 2269–2278. https://doi.org/10.2174/138161210791792877
  • Tasset, D. M., Kubik, M. F., & Steiner, W. (1997). Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology, 272(5), 688–698. https://doi.org/10.1006/jmbi.1997.1275
  • Toh, S. Y., Citartan, M., Gopinath, S. C. B., & Tang, T.-H. (2015). Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosensors & Bioelectronics, 64, 392–403. https://doi.org/10.1016/j.bios.2014.09.026
  • Torrie, G. M., & Valleau, J. P. (1977). Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics, 23(2), 187–199. https://doi.org/10.1016/0021-9991(77)90121-8
  • Toulme, J. J., Di Primo, C., & Moreau, S. (2001). Modulation of RNA function by oligonucleotides recognizing RNA structure. Progress in Nucleic Acid Research and Molecular Biology, 69, 1–46. https://doi.org/10.1016/s0079-6603(01)69043-3
  • Tseng, C.-Y., Ashrafuzzaman, M., Mane, J. Y., Kapty, J., Mercer, J. R., & Tuszynski, J. A. (2011). Entropic fragment-based approach to aptamer design. Chemical Biology & Drug Design, 78(1), 1–13. https://doi.org/10.1111/j.1747-0285.2011.01125.x
  • van Gunsteren, W. F., & Berendsen, H. J. C. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1(3), 173–185. https://doi.org/10.1080/08927028808080941
  • Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J. C., Cieplak, P., & Dupradeau, F.-Y. (2011). R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research, 39(Web Server issue), W511–W517. https://doi.org/10.1093/nar/gkr288
  • Vaught, J. D., Bock, C., Carter, J., Fitzwater, T., Otis, M., Schneider, D., Rolando, J., Waugh, S., Wilcox, S. K., & Eaton, B. E. (2010). Expanding the chemistry of DNA for in vitro selection. Journal of the American Chemical Society, 132(12), 4141–4151. https://doi.org/10.1021/ja908035g
  • Vlassov, A., Khvorova, A., & Yarus, M. (2001). Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7706–7711. https://doi.org/10.1073/pnas.141041098
  • White, R. R., Sullenger, B. A., & Rusconi, C. P. (2000). Developing aptamers into therapeutics. The Journal of Clinical Investigation, 106(8), 929–934. https://doi.org/10.1172/JCI11325
  • Winkler, W., Nahvi, A., & Breaker, R. R. (2002). Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature, 419(6910), 952–956. https://doi.org/10.1038/nature01145
  • Xiang, Z., Soto, C. S., & Honig, B. (2002). Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7432–7437. https://doi.org/10.1073/pnas.102179699
  • Yalow, R. S., & Berson, S. A. (1996). Immunoassay of endogenous plasma insulin in man. 1960. Obesity Research, 4(6), 583–600. https://doi.org/10.1002/j.1550-8528.1996.tb00274.x
  • Zhao, Q., & Cheng, L. (2013). Detection of thrombin using an excimer aptamer switch labeled with dual pyrene molecules. Analytical and Bioanalytical Chemistry, 405(25), 8233–8239. https://doi.org/10.1007/s00216-013-7240-3
  • Zhou, J., & Rossi, J. (2017). Aptamers as targeted therapeutics: Current potential and challenges. Nature Reviews. Drug Discovery, 16(3), 181–202. https://doi.org/10.1038/nrd.2016.199
  • Zou, X., Wu, J., Gu, J., Shen, L., & Mao, L. (2019). Application of aptamers in virus detection and antiviral therapy. Frontiers in Microbiology, 10, 1462. https://doi.org/10.3389/fmicb.2019.01462

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.