881
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1062-1071 | Received 19 Dec 2020, Accepted 03 Dec 2021, Published online: 16 Dec 2021

References

  • Artika, I. M., Dewantari, A. K., & Wiyatno, A. (2020). Molecular biology of coronaviruses: Current knowledge. Heliyon, 6(8), e04743. https://doi.org/10.1016/j.heliyon.2020.e04743
  • Banks, J. L., Beard, H. S., Cao, Y., Cho, A. E., Damm, W., Farid, R., Felts, A. K., Halgren, T. A., Mainz, D. T., Maple, J. R., Murphy, R., Philipp, D. M., Repasky, M. P., Zhang, L. Y., Berne, B. J., Friesner, R. A., Gallicchio, E., & Levy, R. M. (2005). Integrated modeling program, applied chemical theory (IMPACT). Journal of Computational Chemistry, 26(16), 1752–1780. https://doi.org/10.1002/jcc.20292
  • Bianchi, M., Benvenuto, D., Giovanetti, M., Angeletti, S., Ciccozzi, M., & Pascarella, S. (2020). Sars-CoV-2 envelope and membrane proteins: Structural differences linked to virus characteristics? BioMed Research International, 2020, 4389089. Retrieved October 9, 2020, from https://www.hindawi.com/journals/bmri/2020/4389089/. https://doi.org/10.1155/2020/4389089
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation].SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pp. 43–43. https://doi.org/10.1109/SC.2006.54
  • Brito, A. F., & Pinney, J. W. (2017). Protein-protein interactions in virus-host systems. Frontiers in Microbiology, 8, 1557. https://doi.org/10.3389/fmicb.2017.01557
  • Cabrera‐Garcia, D., Bekdash, R., Abbott, G. W., Yazawa, M., & Harrison, N. L. (2021). The envelope protein of SARS-CoV-2 increases intra-Golgi pH and forms a cation channel that is regulated by pH. The Journal of Physiology, 599(11), 2851–2868. https://doi.org/10.1113/JP281037
  • Chang, C., Chen, C.-M M., Chiang, M., Hsu, Y., & Huang, T. (2013). Transient oligomerization of the SARS-CoV N protein-implication for virus ribonucleoprotein packaging. PLoS One, 8(5), e65045. https://doi.org/10.1371/journal.pone.0065045
  • Chuang, G.-Y., Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2008). DARS (decoys as the reference state) potentials for protein-protein docking. Biophysical Journal, 95(9), 4217–4227. https://doi.org/10.1529/biophysj.108.135814
  • Cubuk, J., Alston, J. J., Incicco, J. J., Singh, S., Stuchell-Brereton, M. D., Ward, M. D., Zimmerman, M. I., Vithani, N., Griffith, D., Wagoner, J. A., Bowman, G. R., Hall, K. B., Soranno, A., & Holehouse, A. S. (2020). The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. bioRxiv. https://doi.org/10.1101/2020.06.17.158121.
  • de Haan, C. A. M., Smeets, M., Vernooij, F., Vennema, H., & Rottier, P. J. M. (1999). Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. Journal of Virology, 73(9), 7441–7452.
  • Duart, G., García-Murria, M. J., Grau, B., Acosta-Cáceres, J. M., Martínez-Gil, L., & Mingarro, I. (2020). SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biology, 10(9), 200209. https://doi.org/10.1098/rsob.200209
  • Fang, X., Ye, L., Timani, K. A., Li, S., Zen, Y., Zhao, M., Zheng, H., & Wu, Z. (2005). Peptide domain involved in the interaction between membrane protein and nucleocapsid protein of SARS-associated coronavirus. Journal of Biochemistry and Molecular Biology, 38(4), 381–385. https://doi.org/10.5483/bmbrep.2005.38.4.381
  • Fernández-Recio, J., Totrov, M., & Abagyan, R. (2004). Identification of protein-protein interaction sites from docking energy landscapes. Journal of Molecular Biology, 335(3), 843–865. https://doi.org/10.1016/j.jmb.2003.10.069
  • Fung, T. S., & Liu, D. X. (2019). Human coronavirus: Host-pathogen interaction. Annual Review of Microbiology, 73(1), 529–557. https://doi.org/10.1146/annurev-micro-020518-115759
  • Giri, R., Bhardwaj, T., Shegane, M., Gehi, B. R., Kumar, P., Gadhave, K., Oldfield, C. J., & Uversky, V. N. (2021). Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cellular and Molecular Life Sciences, 78(4), 1655–1688. https://doi.org/10.1007/s00018-020-03603-x
  • Gordon, D. E., Hiatt, J., Bouhaddou, M., Rezelj, V. V., Ulferts, S., Braberg, H., Jureka, A. S., Obernier, K., Guo, J. Z., Batra, J., Kaake, R. M., Weckstein, A. R., Owens, T. W., Gupta, M., Pourmal, S., Titus, E. W., Cakir, M., Soucheray, M., McGregor, M., … Krogan, N. J, QCRG Structural Biology Consortium. (2020). Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 370(6521), eabe9403. https://doi.org/10.1126/science.abe9403
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • He, R., Dobie, F., Ballantine, M., Leeson, A., Li, Y., Bastien, N., Cutts, T., Andonov, A., Cao, J., Booth, T. F., Plummer, F. A., Tyler, S., Baker, L., & Li, X. (2004). Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, 316(2), 476–483. https://doi.org/10.1016/j.bbrc.2004.02.074
  • He, R., Leeson, A., Ballantine, M., Andonov, A., Baker, L., Dobie, F., Li, Y., Bastien, N., Feldmann, H., Strocher, U., Theriault, S., Cutts, T., Cao, J., Booth, T. F., Plummer, F. A., Tyler, S., & Li, X. (2004). Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Research, 105(2), 121–125. https://doi.org/10.1016/j.virusres.2004.05.002
  • Hillen, H. S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., & Cramer, P. (2020). Structure of replicating SARS-CoV-2 polymerase. Nature, 584(7819), 154–156. https://doi.org/10.1038/s41586-020-2368-8
  • Hsieh, Y.-C., Li, H.-C., Chen, S.-C., & Lo, S.-Y. (2008). Interactions between M protein and other structural proteins of severe, acute respiratory syndrome-associated coronavirus. Journal of Biomedical Science, 15(6), 707–717. https://doi.org/10.1007/s11373-008-9278-3
  • Huang, Q., Yu, L., Petros, A. M., Gunasekera, A., Liu, Z., Xu, N., Hajduk, P., Mack, J., Fesik, S. W., & Olejniczak, E. T. (2004). Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry, 43(20), 6059–6063. https://doi.org/10.1021/bi036155b
  • Hurst, K. R., Kuo, L., Koetzner, C. A., Ye, R., Hsue, B., & Masters, P. S. (2005). A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. Journal of Virology, 79(21), 13285–13297. https://doi.org/10.1128/JVI.79.21.13285-13297.2005
  • Khorsand, B., Savadi, A., & Naghibzadeh, M. (2020). SARS-CoV-2-human protein-protein interaction network. Informatics in Medicine Unlocked, 20, 100413. https://doi.org/10.1016/j.imu.2020.100413
  • Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV Nsp12 polymerase bound to Nsp7 and Nsp8 co-factors. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-10280-3.
  • Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2006). PIPER: An FFT-based protein docking program with pairwise potentials. Proteins, 65(2), 392–406. https://doi.org/10.1002/prot.21117
  • Kumar, A., Kumar, P., & Giri, R. (2020). Zika virus NS4A cytosolic region (residues 1–48) is an intrinsically disordered domain and folds upon binding to lipids. Virology, 550, 27–36. https://doi.org/10.1016/j.virol.2020.07.017
  • Kumar, A., Kumar, P., Saumya, K. U., Kapuganti, S. K., Bhardwaj, T., & Giri, R. (2020). Exploring the SARS-CoV-2 structural proteins for multi-epitope vaccine development: An in-silico approach. Expert Review of Vaccines, 0(0), 1–12. https://doi.org/10.1080/14760584.2020.1813576.
  • Kuo, L., Hurst-Hess, K. R., Koetzner, C. A., & Masters, P. S. (2016). Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. Journal of Virology, 90(9), 4357–4368. https://doi.org/10.1128/JVI.03212-15
  • Kuo, L., & Masters, P. S. (2002). Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. Journal of Virology, 76(10), 4987–4999. https://doi.org/10.1128/jvi.76.10.4987-4999.2002
  • Lasso, G., Mayer, S. V., Winkelmann, E. R., Chu, T., Elliot, O., Patino-Galindo, J. A., Park, K., Rabadan, R., Honig, B., & Shapira, S. D. (2019). A structure-informed atlas of human-virus interactions. Cell, 178(6), 1526–1541.e16. https://doi.org/10.1016/j.cell.2019.08.005
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  • Luo, H., Chen, J., Chen, K., Shen, X., & Jiang, H. (2006). Carboxyl terminus of severe acute respiratory syndrome coronavirus nucleocapsid protein: Self-association analysis and nucleic acid binding characterization. Biochemistry, 45(39), 11827–11835. https://doi.org/10.1021/bi0609319
  • Luo, H., Wu, D., Shen, C., Chen, K., Shen, X., & Jiang, H. (2006). Severe acute respiratory syndrome coronavirus membrane protein interacts with nucleocapsid protein mostly through their carboxyl termini by electrostatic attraction. The International Journal of Biochemistry & Cell Biology, 38(4), 589–599. https://doi.org/10.1016/j.biocel.2005.10.022
  • Luo, H., Ye, F., Chen, K., Shen, X., & Jiang, H. (2005). SR-rich motif plays a pivotal role in recombinant SARS coronavirus nucleocapsid protein multimerization. Biochemistry, 44(46), 15351–15358. https://doi.org/10.1021/bi051122c
  • Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Yan, L., Zhang, R., & Rao, Z. (2015). Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9436–9441. https://doi.org/10.1073/pnas.1508686112
  • McBride, C. E., Li, J., & Machamer, C. E. (2007). The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. Journal of Virology, 81(5), 2418–2428. https://doi.org/10.1128/JVI.02146-06
  • Pan, A. C., Jacobson, D., Yatsenko, K., Sritharan, D., Weinreich, T. M., & Shaw, D. E. (2019). Atomic-level characterization of protein-protein association. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4244–4249. https://doi.org/10.1073/pnas.1815431116
  • Ritchie, D. W. (2008). Recent Progress and Future Directions in Protein-Protein Docking. Current Protein & Peptide Science, 9(1), 1–15. https://doi.org/10.2174/138920308783565741
  • Rottier, P., Brandenburg, D., Armstrong, J., van der Zeijst, B., & Warren, G. (1984). Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: The E1 glycoprotein of coronavirus mouse hepatitis virus A59. Proceedings of the National Academy of Sciences of the United States of America, 81(5), 1421–1425. https://doi.org/10.1073/pnas.81.5.1421
  • Sharma, N., Prosser, O., Kumar, P., Tuplin, A., & Giri, R. (2020). Small molecule inhibitors possibly targeting the rearrangement of zika virus envelope protein. Antiviral Research, 182, 104876. https://doi.org/10.1016/j.antiviral.2020.104876
  • Subissi, L., Posthuma, C. C., Collet, A., Zevenhoven-Dobbe, J. C., Gorbalenya, A. E., Decroly, E., Snijder, E. J., Canard, B., & Imbert, I. (2014). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America, 111(37), E3900–E3909. https://doi.org/10.1073/pnas.1323705111
  • Surya, W., Li, Y., & Torres, J. (2018). Structural model of the SARS coronavirus E channel in LMPG micelles. Biochimica et Biophysica Acta Biomembranes, 1860(6), 1309–1317. https://doi.org/10.1016/j.bbamem.2018.02.017
  • Tylor, S., Andonov, A., Cutts, T., Cao, J., Grudesky, E., Van Domselaar, G., Li, X., & He, R. (2009). The SR-rich motif in SARS-CoV nucleocapsid protein is important for virus replication. Canadian Journal of Microbiology, 55(3), 254–260. https://doi.org/10.1139/w08-139
  • Verma, S., Bednar, V., Blount, A., & Hogue, B. G. (2006). Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein. Journal of Virology, 80(9), 4344–4355. https://doi.org/10.1128/JVI.80.9.4344-4355.2006
  • von Brunn, A., Teepe, C., Simpson, J. C., Pepperkok, R., Friedel, C. C., Zimmer, R., Roberts, R., Baric, R., & Haas, J. (2007). Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS One, 2(5), e459. https://doi.org/10.1371/journal.pone.0000459
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wiederschain, G. Y. (2006). Protein-protein interactions. A molecular cloning manual. Biochemistry (Moscow), 71(6), 697–697. https://doi.org/10.1134/S0006297906060162
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation: PROTEIN SCIENCE.ORG. Protein Science: A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Zeng, W., Liu, G., Ma, H., Zhao, D., Yang, Y., Liu, M., Mohammed, A., Zhao, C., Yang, Y., Xie, J., Ding, C., Ma, X., Weng, J., Gao, Y., He, H., & Jin, T. (2020). Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochemical and Biophysical Research Communications, 527(3), 618–623. https://doi.org/10.1016/j.bbrc.2020.04.136
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.