197
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Multifaceted 3D-QSAR analysis for the identification of pharmacophoric features of biphenyl analogues as aromatase inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 1322-1341 | Received 16 Mar 2021, Accepted 11 Dec 2021, Published online: 29 Dec 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • American Cancer Society. (2021). Cancer facts & figures. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf Accessed 12 Feb 2021
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Banjare, L., Verma, S. K., Jain, A. K., & Thareja, S. (2019). Structure guided molecular docking assisted alignment dependent 3DQSAR study on steroidal aromatase inhibitors (SAIs) as anti-breast cancer agents. Letters in Drug Design & Discovery, 16(7), 808–817. https://doi.org/10.2174/1570180815666181010101024
  • Banjare, L., Verma, S. K., Jain, A. K., & Thareja, S. (2020). Design and pharmacophoric identification of flavonoid scaffold‐based aromatase inhibitors. Journal of Heterocyclic Chemistry, 57(9), 3483–3492. https://doi.org/10.1002/jhet.4068
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Brueggemeier, R. W. (2006). Update on the use of aromatase inhibitors in breast cancer. Expert Opinion on Pharmacotherapy, 7(14), 1919–1930. https://doi.org/10.1517/14656566.7.14.1919
  • Brueggemeier, R. W., Richards, J. A., Joomprabutra, S., Bhat, A. S., & Whetstone, J. L. (2001). Molecular pharmacology of aromatase and its regulation by endogenous and exogenous agents. The Journal of Steroid Biochemistry and Molecular Biology, 79(1-5), 75–84. https://doi.org/10.1016/S0960-0760(01)00127-3
  • Cepa, M. M., da Silva, E. J. T., Correia-da-Silva, G., Roleira, F. M., & Teixeira, N. A. (2008). Synthesis and biochemical studies of 17-substituted androst-3-enes and 3,4-epoxyandrostanes as aromatase inhibitors. Steroids, 73(14), 1409–1415. https://doi.org/10.1016/j.steroids.2008.07.001
  • Chen, S., Zhou, D., Okubo, T., Kao, Y.-C., Eng, E. T., Grube, B., Kwon, A., Yang, C., & Yu, B. (2002). Prevention and treatment of breast cancer by suppressing aromatase activity and expression. Annals of the New York Academy of Sciences, 963(1), 229–238. https://doi.org/10.1111/j.1749-6632.2002.tb04115.x
  • El Khatabi, K., Aanouz, I., El-Mernissi, R., Singh, A. K., Ajana, M. A., Lakhlifi, T., Kumar, S., & Bouachrine, M. (2021). Integrated 3D-QSAR, molecular docking, and molecular dynamics simulation studies on 1,2,3-triazole based derivatives for designing new acetylcholinesterase inhibitors. Turkish Journal of Chemistry, 45(3), 647–660. https://doi.org/10.3906/kim-2010-34
  • Geisler, J., & Lønning, P. E. (2005). Aromatase inhibition: translation into a successful therapeutic approach. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 11(8), 2809–2821. https://doi.org/10.1158/1078-0432.CCR-04-2187
  • Ghosh, D., Griswold, J., Erman, M., & Pangborn, W. (2010). X-ray structure of human aromatase reveals an androgen-specific active site. The Journal of Steroid Biochemistry and Molecular Biology, 118(4–5), 197–202. https://doi.org/10.1016/j.jsbmb.2009.09.012
  • Gupta, S., Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Senapati, S., & Kumar, S. (2021). Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure and Dynamics, 39(12), 4334–4345. https://doi.org/10.1080/07391102.2020.1776157
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
  • Hong, Y., Yu, B., Sherman, M., Yuan, Y. C., Zhou, D., & Chen, S. (2007). Molecular basis for the aromatization reaction and exemestane-mediated irreversible inhibition of human aromatase. Molecular Endocrinology (Baltimore, Md.), 21(2), 401–414. https://doi.org/10.1210/me.2006-0281
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–28. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jain, Z. J., Gide, P. S., & Kankate, R. S. (2017). Biphenyls and their derivatives as synthetically and pharmacologically important aromatic structural moieties. Arabian Journal of Chemistry, 10, S2051–S2066. https://doi.org/10.1016/j.arabjc.2013.07.035
  • Jiang, W., & Ghosh, D. (2012). Motion and flexibility in human cytochrome p450 aromatase. PLOS One, 7(2), e32565 https://doi.org/10.1371/journal.pone.0032565
  • Johansson, M. P., & Olsen, J. (2008). Torsional barriers and equilibrium angle of biphenyl: reconciling theory with experiment. Journal of Chemical Theory and Computation, 4(9), 1460–1471. https://doi.org/10.1021/ct800182e
  • Kumar Verma, S., Kant Sharma, S., & Thareja, S. (2015). Docking study of novel pyrrolidine derivatives as potential dipeptidyl peptidase-IV (DPP-IV) inhibitors. Letters in Drug Design & Discovery, 12(4), 284–291. https://doi.org/10.2174/1570180811666141016000752
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kushwaha, P. P., Maurya, S. K., Singh, A., Prajapati, K. S., Singh, A. K., Shuaib, M., & Kumar, S. (2021a). Bulbine frutescens phytochemicals as novel ABC-transporter inhibitor: a molecular docking and molecular dynamics simulation study. Journal of Cancer Metastasis and Treatment, 7(2). http://dx.doi.org/10.20517/2394-4722.2020.92
  • Kushwaha, P. P., Singh, A. K., Bansal, T., Yadav, A., Prajapati, K. S., Shuaib, M., & Kumar, S. (2021b). Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach. Frontiers in Cellular and Infection Microbiology, 11, 730288 https://doi.org/10.3389/fcimb.2021.730288
  • Kushwaha, P. P., Singh, A. K., Prajapati, K. S., Shuaib, M., Gupta, S., & Kumar, S. (2021c). Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study. Microbial Pathogenesis, 157, 104954. https://doi.org/10.1016/j.micpath.2021.104954
  • Lemkul, J. A. (2018). From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation Package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 5068. https://doi.org/10.33011/livecoms.1.1.5068
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Protein Data Bank. (2021). http://www.rcsb.org/pdb/explore/explore.do?structureId=3S79 Accessed 01 Jan 2021
  • Robinson, D. D., Winn, P. J., Lyne, P. D., & Richards, W. G. (1999). Self-organizing molecular field analysis: A tool for structure-activity studies. Journal of Medicinal Chemistry, 42(4), 573–583. https://doi.org/10.1021/jm9810607
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallography D Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Simpson, E. R., Clyne, C., Rubin, G., Boon, W. C., Robertson, K., Britt, K., Speed, C., & Jones, M. (2002). Aromatase-a brief overview. Annual Review of Physiology, 64(1), 93–127. https://doi.org/10.1146/annurev.physiol.64.081601.142703
  • Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Gupta, S., & Kumar, S. (2021). Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study. Computational Biological Medicine, 130, 104185 https://doi.org/10.1016/j.compbiomed.2020.104185
  • Singh, Y., Saklani, S., Tantra, T., & Thareja, S. (2021). Amino acid derived prodrugs: An approach to improve the bioavailability of clinically approved drugs. Current Topics in Medicinal Chemistry, 21(24), 2170–2183. https://doi.org/10.2174/1568026621666210602154438
  • To, S. Q., Knower, K. C., Cheung, V., Simpson, E. R., & Clyne, C. D. (2015). Transcriptional control of local estrogen formation by aromatase in the breast. The Journal of Steroid Biochemistry and Molecular Biology, 145, 179–186. https://doi.org/10.1016/j.jsbmb.2014.05.004
  • Verma, S. K., & Thareja, S. (2016). Molecular docking assisted 3D-QSAR study of benzylidene-2, 4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of Type-2 diabetes mellitus. RSC Advances, 6(40), 33857–33867. https://doi.org/10.1039/C6RA03067J
  • Verma, S. K., Kumar, N., & Thareja, S. (2021). Gaussian field-based comparative 3D QSAR modelling for the identification of favourable pharmacophoric features of chromene derivatives as selective inhibitors of ALR2 over ALR1. Structural Chemistry, 32(3), 1289–1298. https://doi.org/10.1007/s11224-020-01714-6
  • Verma, S. K., Ratre, P., Jain, A. K., Liang, C., Gupta, G. D., & Thareja, S. (2021). De novo designing, assessment of target affinity and binding interactions against aromatase: Discovery of novel leads as anti-breast cancer agents. Structural Chemistry, 32(2), 847–858. https://doi.org/10.1007/s11224-020-01673-y
  • Wong, C., & Chen, S. (2012). The development, application and limitations of breast cancer cell lines to study tamoxifen and aromatase inhibitor resistance. The Journal of Steroid Biochemistry and Molecular Biology, 131(3-5), 83–92. https://doi.org/10.1016/j.jsbmb.2011.12.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.