285
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Descriptor-free QSAR: effectiveness in screening for putative inhibitors of FGFR1

, ORCID Icon, , , , , & show all
Pages 2016-2032 | Received 19 Feb 2021, Accepted 03 Jan 2022, Published online: 25 Jan 2022

References

  • Abadi, M. (2016). Tensor flow: A system for large-scale machine learning. In Proceedings of the12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 265-283. https://doi.org/10.1016/0076-6879(83)01039-3
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ashton, M., Barnard, J., Casset, F., Charlton, M., Downs, G., Gorse, D., Holliday, J., Lahana, R., & Willett, P. (2002). Identification of diverse database subsets using property-based and fragment-based molecular descriptions. Quantitative Structure-Activity Relationships, 21(6), 598–604. https://doi.org/10.1002/qsar.200290002
  • Bochevarov, A. D. (2013). Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry, 2013(113), 2110–2142. https://doi.org/10.1002/qua.24481
  • Cambria, E., & White, B. (2014). Jumping NLP curves: A review of natural language processing research. IEEE Computational Intelligence Magazine, 9(2), 48–57. https://doi.org/10.1109/MCI.2014.2307227
  • Chakravarti, S. K., & Alla, S. R. M. (2019). Descriptor free QSAR modeling using deep learning with long short-term memory neural networks. Frontiers in Artificial Intelligence, 2, 17. https://doi.org/10.3389/frai.2019.00017
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA (vol. 42, no. 8, pp. 785–794). https://doi.org/10.1145/2939672.2939785
  • Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. (2015). Attention-based models for speech recognition. Advances in Neural Information Processing Systems, 2015, 577–585.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1-13.https://doi.org/10.1038/srep42717
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Goodarzi, M., Dejaegher, B., & Vander Heyden, Y. (2012). Feature selection methods in QSAR studies. Journal of AOAC International, 95(3), 636–651. https://doi.org/10.5740/jaoacint.SGE_Goodarzi
  • Gupta, A., Müller, A. T., Huisman, B. J. H., Fuchs, J. A., Schneider, P., & Schneider, G. (2018). Generative recurrent networks for de novo drug design. Molecular Informatics, 37(1–2), 1880141–1880110. https://doi.org/10.1002/minf.201700111
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force-field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Haugsten, E. M., Wiedlocha, A., Olsnes, S., & Wesche, J. (2010). Roles of fibroblast growth factor receptors in carcinogenesis. Molecular Cancer Research: MCR, 8(11), 1439–1452. https://doi.org/10.1158/1541-7786.MCR-10-0168
  • Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 1–11. https://doi.org/10.5121/ijdkp.2015.5201
  • Idakwo, G., Luttrell, J., IV, Chen, M., Hong, H., Gong, P., & Zhang, C. (2019). A review of feature reduction methods for QSAR-based toxicity prediction. Challenges and Advances in Computational Chemistry and Physics, 30, 119–139. https://doi.org/10.1007/978-3-030-16443-0_7
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Katoh, M. (2019). Fibroblast growth factor receptors as treatment targets in clinical oncology. Nature Reviews. Clinical Oncology, 16(2), 105–122. https://doi.org/10.1038/s41571-018-0115-y
  • Khan, P. M., & Roy, K. (2018). Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR). Expert Opinion on Drug Discovery, 13(12), 1075–1089. https://doi.org/10.1080/17460441.2018.1542428
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Leach, A. R., & Gillet, V. J. (2007). An introduction to chemoinformatics (Vol. 2). Springer.
  • Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. https://doi.org/10.1016/j.cell.2010.06.011
  • Liou, C. Y., Cheng, W. C., Liou, J. W., & Liou, D. R. (2014). Autoencoder for words. Neurocomputing, 139, 84–96. https://doi.org/10.1016/j.neucom.2013.09.055
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. https://doi.org/10.1021/jm060522a
  • Marchetti, A., Martella, C., Felicioni, L., Barassi, F., Salvatore, S., Chella, A., Camplese, P. P., Iarussi, T., Mucilli, F., Mezzetti, A., Cuccurullo, F., Sacco, R., & Buttitta, F. (2005). EGFR mutations in non-small-cell lung cancer: Analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 23(4), 857–865. https://doi.org/10.1200/JCO.2005.08.043
  • Mauri, A., Consonni, V., & Todeschini, R. (2016). Molecular descriptors. In Leszczynski J. (Ed.), Handbook of computational chemistry. . (Vol. 30, pp. 1–29). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-6169-8_51-1
  • Maziarka, Ł., Pocha, A., Kaczmarczyk, J., Rataj, K., Danel, T., & Warchoł, M. (2020). Mol-CycleGAN: A generative model for molecular optimization. Journal of Cheminformatics, 12(1), 1-18 https://doi.org/10.1186/s13321-019-0404-1
  • Melagraki, G., & Afantitis, A. (2013). Enalos KNIME nodes: Exploring corrosion inhibition of steel in acidic medium. Chemometrics and Intelligent Laboratory Systems, 123, 9–14. https://doi.org/10.1016/j.chemolab.2013.02.003
  • Melagraki, G., Afantitis, A., Sarimveis, H., Koutentis, P. A., Kollias, G., & Igglessi-Markopoulou, O. (2009). Predictive QSAR workflow for the in silico identification and screening of novel HDAC inhibitors. Molecular Diversity, 13(3), 301–311. https://doi.org/10.1007/s11030-009-9115-2
  • Muhammad, U., Uzairu, A., & Arthur, D. E. (2018). Review on: Quantitative structure activity relationship (QSAR) modeling. Journal of Analytical & Pharmaceutical Research, 7(2), 240–242. https://doi.org/10.15406/japlr.2018.07.00232
  • Muratov, E. N., Bajorath, J., Sheridan, R. P., Tetko, I. V., Filimonov, D., Poroikov, V., Oprea, T. I., Baskin, I. I., Varnek, A., Roitberg, A., Isayev, O., Curtalolo, S., Fourches, D., Cohen, Y., Aspuru-Guzik, A., Winkler, D. A., Agrafiotis, D., Cherkasov, A., & Tropsha, A. (2020). QSAR without borders. Chemical Society Reviews, 49(11), 3525–3564. https://doi.org/10.1039/D0CS00098A
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rekhtman, N., Paik, P. K., Arcila, M. E., Tafe, L. J., Oxnard, G. R., Moreira, A. L., Travis, W. D., Zakowski, M. F., Kris, M. G., & Ladanyi, M. (2012). Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: Lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 18(4), 1167–1176. https://doi.org/10.1158/1078-0432.CCR-11-2109
  • Rücker, C., Rücker, G., & Meringer, M. (2007). Y-randomization and its variants in QSPR/QSAR. Journal of Chemical Information and Modeling, 47(6), 2345–2357. https://doi.org/10.1021/ci700157b
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Sepp, H., & Jurgen, S. (1997). Long short-term memory. Neural Computation, 9(6), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK (a) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Shuyan, D., Zhou, Z., Chen, Z., Xu, G., & Chen, Y. (2019). Fibroblast growth factor receptors (FGFRs): Structures and small molecule inhibitors shuyan. Cell, 8(6), 1–15.
  • Sidorova, J., & Anisimova, M. (2014). NLP-inspired structural pattern recognition in chemical application q. Pattern Recognition Letters, 45, 11–16. https://doi.org/10.1016/j.patrec.2014.02.012
  • Sidorova, J., & Garcia, J. (2015). Bridging from syntactic to statistical methods: Classification with automatically segmented features from sequences. Pattern Recognition, 48(11), 3749–3756. https://doi.org/10.1016/j.patcog.2015.05.001
  • Singh, N., Villoutreix, B. O., & Ecker, G. F. (2019). Rigorous sampling of docking poses unveils binding hypothesis for the halogenated ligands of L-type Amino acid Transporter 1 (LAT1). Scientific Reports, 9(1), 1–20. https://doi.org/10.1038/s41598-019-51455-8
  • Sleeman, M., Fraser, J., McDonald, M., Yuan, S., White, D., Grandison, P., Kumble, K., Watson, J. D., & Murison, J. G. (2001). Identification of a new fibroblast growth factor receptor, FGFR5. Gene, 271(2), 171–182. https://doi.org/10.1016/S0378-1119(01)00518-2
  • Soman, S. S., Sivakumar, K. C., & Sreekumar, E. (2010). Molecular dynamics simulation studies and in vitro site directed mutagenesis of avian beta-defensin Apl_AvBD2. BMC Bioinformatics, 11(S1), 1-9. https://doi.org/10.1186/1471-2105-11-S1-S7
  • Staker, J., Marshall, K., Abel, R., & McQuaw, C. M. (2019). Molecular structure extraction from documents using deep learning. Journal of Chemical Information and Modeling, 59(3), 1017–1029. https://doi.org/10.1021/acs.jcim.8b00669
  • Tandon, H., Chakraborty, T., & Suhag, V. (2019). A concise review on the significance of QSAR in drug design. Chemical and Biomolecular Engineering, 4(4), 45. https://doi.org/10.11648/j.cbe.20190404.11
  • Todeschini, R., & Consonni, V. (2007). Handbook of molecular descriptors. Methods and principles in medicinal chemistry (pp. 1–686). WILEY-VCH. https://doi.org/10.1002/9783527610907.scard
  • Travis, W. D. (2011). Pathology of lung cancer. Clinics in Chest Medicine, 32(4), 669–692. https://doi.org/10.1016/j.ccm.2011.08.005
  • Turner, N., & Grose, R. (2010). Fibroblast growth factor signalling: From development to cancer. Nature Reviews. Cancer, 10(2), 116–129. https://doi.org/10.1038/nrc2780
  • Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., & Mueller, A. (2015). Scikit-learn. GetMobile: Mobile Computing and Communications, 19(1), 29–33. https://doi.org/10.1145/2786984.2786995
  • Weininger, D. (1987). SMILES, a chemical language and information system. Journal of Chemical Information Science, 28, 31–36.
  • Weiss, J. (2012). Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer (Science Translational Medicine (2012) 4, (130er2)). Science Translational Medicine, 4(130), 1-18. https://doi.org/10.1126/scitranslmed.3004128
  • Winter, R., Montanari, F., Noé, F., & Clevert, D. A. (2019). Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chemical Science, 10(6), 1692–1701. https://doi.org/10.1039/c8sc04175j
  • Yosaatmadja, Y., Patterson, A. V., Smaill, J. B., & Squire, C. J. (2015). The 1.65 Å resolution structure of the complex of AZD4547 with the kinase domain of FGFR1 displays exquisite molecular recognition. Acta Crystallographica. Section D, Biological Crystallography, 71(Pt 3), 525–533. https://doi.org/10.1107/S1399004714027539
  • Yoza, K., Himeno, R., Amano, S., Kobashigawa, Y., Amemiya, S., Fukuda, N., Kumeta, H., Morioka, H., & Inagaki, F. (2016). Biophysical characterization of drug-resistant mutants of fibroblast growth factor receptor 1. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 21(10), 1049–1058. https://doi.org/10.1111/gtc.12405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.