262
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Excavating phytochemicals from plants possessing antiviral activities for identifying SARS-CoV hemagglutinin-esterase inhibitors by diligent computational workflow

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2382-2397 | Received 31 Aug 2020, Accepted 12 Jan 2022, Published online: 31 Jan 2022

References

  • Aamir, M., Singh, V. K., Dubey, M. K., Meena, M., Kashyap, S. P., Katari, S. K., Upadhyay, R. S., Umamaheswari, A., & Singh, S. (2018). In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against Fusarium wilt in tomato. Frontiers in Pharmacology, 9, 1038. https://doi.org/10.3389/fphar.2018.01038
  • Ashour, H. M., Elkhatib, W. F., Rahman, M., & Elshabrawy, H. A. (2020). Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens, 9(3), 186. https://doi.org/10.3390/pathogens9030186
  • Balasubramanian, G., Sarathi, M., Kumar, S. R., & Hameed, A. S. (2007). Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture, 263(1-4), 15–19. https://doi.org/10.1016/j.aquaculture.2006.09.037
  • Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011–1033. https://doi.org/10.3390/v4061011
  • Bhardwaj, V. K., & Purohit, R. (2021). Targeting the protein-protein interface pocket of aurora-A-TPX2 complex: Rational drug design and validation. Journal of Biomolecular Structure & Dynamics, 39(11), 3882–3891. https://doi.org/10.1080/07391102.2020.1772109
  • Boozari, M., & Hosseinzadeh, H. (2020). Natural products for COVID‐19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytotherapy Research, 35(2), 864-876. https://onlinelibrary.wiley.com/doi/10.1002/ptr.6873 (February 3, 2021).
  • Chikhale, Rupesh, V., & Saurabh K, S. (2020). In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. Journal of Biomolecular Structure and Dynamics, 1–15. https://www.tandfonline.com/doi/full/10.1080/07391102.2020.1784289 (November 8, 2020).
  • Choi, J., Kim, H.-J., Jin, X., Lim, H., Kim, S., Roh, I.-S., Kang, H.-E., No, K. T., & Sohn, H.-J. (2018). Application of the fragment molecular orbital method to discover novel natural products for prion disease. Scientific Reports, 8(1), 9. https://doi.org/10.1038/s41598-018-31080-7
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dao, T. T., Nguyen, P. H., Won, H. K., Kim, E. H., Park, J., Won, B. Y., & Oh, W. K. (2012). Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chemistry, 134(1), 21–28. https://doi.org/10.1016/j.foodchem.2012.02.015
  • Devaux, C. A., Rolain, J.-M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
  • Dutta, A., Ghoshal, A., Mandal, D., Mondal, N. B., Banerjee, S., Sahu, N. P., & Mandal, C. (2007). Racemoside A, an anti-leishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Leishmania Donovani. Journal of Medical Microbiology, 56(Pt 9), 1196–1204. https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47114-0 (November 8, 2020). https://doi.org/10.1099/jmm.0.47114-0
  • Fang, L., Karakiulakis, G., & Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet. Respiratory Medicine, 8(4), e21. https://doi.org/10.1016/S2213-2600(20)30116-8
  • Fantini, J., Scala, C. D., Chahinian, H., & Yahi, N. (2020). Structural and molecular modeling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International Journal of Antimicrobial Agents, 55(5), 105960. https://doi.org/10.1016/j.ijantimicag.2020.105960
  • Girme, A., Saste, G., Pawar, S., Balasubramaniam, A. K., Musande, K., Darji, B., Satti, N. K., Verma, M. K., Anand, R., Singh, R., Vishwakarma, R. A., & Hingorani, L. (2020). Investigating 11 withanosides and withanolides by UHPLC–PDA and mass fragmentation studies from Ashwagandha (Withania Somnifera). ACS Omega, 5(43), 27933–27943. https://pubs.acs.org/doi/10.1021/acsomega.0c03266 (November 8, 2020). https://doi.org/10.1021/acsomega.0c03266
  • Holmes, K. V. (2003). SARS-associated coronavirus. The New England Journal of Medicine, 348(20), 1948–1951. https://doi.org/10.1056/NEJMp030078
  • Ishnava, K. B., Chauhan, K., & Bhatt, C. (2012). Screening of antifungal activity of various plant leaves extracts from Indian plants. Archives of Phytopathology and Plant Protection, 45(2), 152–160. https://doi.org/10.1080/03235408.2010.505777
  • Kadukova, M., Chupin, V., & Grudinin, S. (2020). Docking rigid macrocycles using Convex-PL, AutoDock Vina, and RDKit in the D3R Grand Challenge 4. Journal of Computer-Aided Molecular Design, 34(2), 191–200. https://doi.org/10.1007/s10822-019-00263-3
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., & Vriend, G. (2004). Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins, 57(4), 678–683. https://doi.org/10.1002/prot.20251
  • Kumar, A., Choudhir, G., Shukla, S. K., Sharma, M., Tyagi, P., Bhushan, A., & Rathore, M. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 39(10), 3760–3770.
  • Kumar, A., Kumar, R., Sharma, M., Kumar, U., Gajula, M., & Singh, K. P. (2018). Uttarakhand Medicinal Plants Database (UMPDB): A platform for exploring genomic, chemical, and traditional knowledge. Data, 3(1), 7. https://doi.org/10.3390/data3010007
  • Kumar, S. P., Patel, C. N., Rawal, R. M., & Pandya, H. A. (2020). Energetic contributions of amino acid residues and its cross‐talk to delineate ligand‐binding mechanism. Proteins: Structure, Function, and Bioinformatics, 88(9), 1207–1225. https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.25894 (September 19, 2020). https://doi.org/10.1002/prot.25894
  • Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210–1223. https://doi.org/10.1016/j.jiph.2020.06.016
  • Lamari, Z., Larbi, R., & Negache, H. (2016). Trace element content of Zingiber officinalis and Salvia officinalis medicinal plants from Algeria. Journal of Radioanalytical and Nuclear Chemistry, 309(1), 17–22. https://doi.org/10.1007/s10967-016-4858-6
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England), 395(10224), 565–574.
  • Mabbitt, P. D., Correy, G. J., Meirelles, T., Fraser, N. J., Coote, M. L., & Jackson, C. J. (2016). Conformational disorganization within the active site of a recently evolved organophosphate hydrolase limits its catalytic efficiency. Biochemistry, 55(9), 1408–1417. https://doi.org/10.1021/acs.biochem.5b01322
  • Mwitari, P. G., Ayeka, P. A., Ondicho, J., Matu, E. N., & Bii, C. C. (2013). Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus. PloS One, 8(6), e65619. https://doi.org/10.1371/journal.pone.0065619
  • Naidoo, D., Roy, A., Slavětínská, L. P., Chukwujekwu, J., Gupta, S., & Van Staden, J. (2020). New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling. Journal of Ethnopharmacology, 248, 112305. https://doi.org/10.1016/j.jep.2019.112305
  • Parmar, P., Shukla, A., Rao, P., Saraf, M., Patel, B., & Goswami, D. (2020). The rise of gingerol as anti-QS molecule: Darkest episode in the LuxR-mediated bioluminescence saga. Bioorganic Chemistry, 99, 103823. https://doi.org/10.1016/j.bioorg.2020.103823
  • Patel, C. N., Kumar, S. P., Pandya, H. A., & Rawal, R. M. (2021). Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Molecular Diversity, 25(1), 421–433. (February 3, 2021). https://doi.org/10.1007/s11030-020-10135-w
  • Pene, F., Merlat, A., Vabret, A., Rozenberg, F., Buzyn, A., Dreyfus, F., Cariou, A., Freymuth, F., & Lebon, P. (2003). Coronavirus 229E-related pneumonia in immunocompromised patients. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 37(7), 929–932. https://doi.org/10.1086/377612
  • Razzaghi-Asl, N., Mirzayi, S., Mahnam, K., & Sepehri, S. (2018). Identification of COX-2 inhibitors via structure-based virtual screening and molecular dynamics simulation. Journal of Molecular Graphics & Modelling, 83, 138–152. https://doi.org/10.1016/j.jmgm.2018.05.010
  • Ren, J., Yuan, X., Li, J., Lin, S., Yang, B., Chen, C., Zhao, J., Zheng, W., Liao, H., Yang, Z., & Qu, Z. (2020). Assessing the performance of the g_mmpbsa tools to simulate the inhibition of oseltamivir to influenza virus neuraminidase by molecular mechanics Poisson–Boltzmann surface area methods. Journal of the Chinese Chemical Society, 67(1), 46–53. https://doi.org/10.1002/jccs.201900148
  • Sabde, S., Bodiwala, H. S., Karmase, A., Deshpande, P. J., Kaur, A., Ahmed, N., Chauthe, S. K., Brahmbhatt, K. G., Phadke, R. U., Mitra, D., Bhutani, K. K., & Singh, I. P. (2011). Anti-HIV activity of Indian medicinal plants. Journal of Natural Medicines, 65(3–4), 662–669. https://doi.org/10.1007/s11418-011-0513-2
  • Schrodinger, L. (2019). Schrodinger release 2019-3: Desmond molecular dynamics system, DE Shaw research. Maestro-Desmond interoperability tools. Schrodinger, LLC.
  • Shahid, M. A., Chowdhury, M. A., & Kashem, M. A. (2020). Scope of natural plant extract to deactivate COVID-19. https://www.researchsquare.com/article/rs-19240/latest.pdf (February 3, 2021).
  • Subbaraju, G. V., Vanisree, M., Rao, C. V., Sivaramakrishna, C., Sridhar, P., Jayaprakasam, B., & Nair, M. G. (2006). Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. Journal of Natural Products, 69(12), 1790–1792. https://pubs.acs.org/sharingguidelines (November 8, 2020).
  • Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–618. https://doi.org/10.1038/s41423-020-0400-4
  • Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.-T K., Li, F., Jiang, S., Du, L., & Zhou, Y. (2016). A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virology, 499, 375–382. https://doi.org/10.1016/j.virol.2016.10.005
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, C., Greene, D., & Xiao, L. (2018). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 87.
  • Wang, W., & Kollman, P. A. (2000). Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. Journal of Molecular Biology, 303(4), 567–582. https://doi.org/10.1006/jmbi.2000.4057
  • Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., & Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China. Life Sciences, 63(3), 457–460. https://doi.org/10.1007/s11427-020-1637-5
  • Zeng, Q., Langereis, M. A., van Vliet, A. L., Huizinga, E. G., & de Groot, R. J. (2008). Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proceedings of the National Academy of Sciences of the United States of America, 105(26), 9065–9069. https://doi.org/10.1073/pnas.0800502105
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.