525
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, molecular docking, molecular dynamics and evaluation of Drug-Likeness properties of the fused N-Formyl pyrazoline substituted new dehydroepiandrosterone derivatives

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2492-2503 | Received 30 May 2021, Accepted 21 Jan 2022, Published online: 08 Feb 2022

References

  • Abdalla, M. M., Al-Omar, M. A., Bhat, M. A., Amr, A.-G E., & Al-Mohizea, A. M. (2012). Steroidal pyrazolines evaluated as aromatase and quinone reductase-2 inhibitors for chemoprevention of cancer. International Journal of Biological Macromolecules, 50(4), 1127–1132.
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Amr, A. E.-G E., Abdel-Latif, N. A., & Abdalla, M. M. (2006). Synthesis and antiandrogenic activity of some new 3-substituted androstano [17, 16-c]-5′-aryl-pyrazoline and their derivatives. Bioorganic & Medicinal Chemistry, 14(2), 373–384. https://doi.org/10.1016/j.bmc.2005.08.024
  • Banday, A. H., Mir, B. P., Lone, I. H., Suri, K., & Kumar, H. S. (2010). Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 75(12), 805–809.
  • Banday, A. H., Shameem, S. A., & Jeelani, S. (2014). Steroidal pyrazolines and pyrazoles as potential 5α-reductase inhibitors: Synthesis and biological evaluation. Steroids, 92, 13–19. https://doi.org/10.1016/j.steroids.2014.09.004
  • Bansal, R., Guleria, S., Thota, S., Hartmann, R. W., & Zimmer, C. (2011). Synthesis and biological evaluation of 16E-arylidenosteroids as cytotoxic and anti-aromatase agents. Chemical & Pharmaceutical Bulletin, 59(3), 327–331.
  • Bansal, R., & Singh, R. (2020). Steroidal pyrazolines as a promising scaffold in drug discovery. Future Medicinal Chemistry, 12(10), 949–959.
  • Barsoum, F. F., Hosni, H. M., & Girgis, A. S. (2006). Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties . Bioorganic & Medicinal Chemistry, 14(11), 3929–3937. https://doi.org/10.1016/j.bmc.2006.01.042
  • Binder, K., Horbach, J., Kob, W., Paul, W., & Varnik, F. (2004). Molecular dynamics simulations. Journal of Physics: Condensed Matter, 16(5), S429.
  • Biovia, D. S. (2017). Discovery studio visualizer. 936.
  • Cepa, M. M., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M., & Teixeira, N. A. (2005). Structure-Activity relationships of new A, D-ring modified steroids as aromatase inhibitors: design, synthesis, and biological activity evaluation. Journal of Medicinal Chemistry, 48(20), 6379–6385. https://doi.org/10.1021/jm050129p
  • Chadha, N., Tiwari, A. K., Kumar, V., Lal, S., Milton, M. D., & Mishra, A. K. (2015). Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis. Journal of Biomolecular Structure & Dynamics, 33(5), 978–990. https://doi.org/10.1080/07391102.2014.921793
  • Chadha, N., Tiwari, A. K., Kumar, V., Milton, M. D., & Mishra, A. K. (2015). In silico thermodynamics stability change analysis involved in BH4 responsive mutations in phenylalanine hydroxylase: QM/MM and MD simulations analysis. Journal of Biomolecular Structure & Dynamics, 33(3), 573–583. https://doi.org/10.1080/07391102.2014.897258
  • Choudhary, M. I., Alam, M. S., Yousuf, S., Wu, Y.-C., Lin, A.-S., & Shaheen, F. (2011). Pregnenolone derivatives as potential anticancer agents. Steroids, 76(14), 1554–1559.
  • Fan, N.-J., Tang, J.-J., Li, H., Li, X.-J., Luo, B., & Gao, J.-M. (2013). Synthesis and cytotoxic activity of some novel steroidal C-17 pyrazolinyl derivatives. European Journal of Medicinal Chemistry, 69, 182–190.
  • Frank, É., Mucsi, Z., Zupkó, I., Réthy, B., Falkay, G., Schneider, G., & Wölfling, J. (2009). Efficient approach to androstene-fused arylpyrazolines as potent antiproliferative agents. Experimental and theoretical studies of substituent effects on BF3-catalyzed intramolecular [3 + 2] cycloadditions of olefinic phenylhydrazones. Journal of the American Chemical Society, 131(11), 3894–3904. https://doi.org/10.1021/ja808636e
  • Gomez, L., Kovac, J. R., & Lamb, D. J. (2015). CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 95, 80–87.
  • Hana, H. Y., Khalil, W. K., Elmakawy, A. I., & Elmegeed, G. A. (2008). Androgenic profile and genotoxicity evaluation of testosterone propionate and novel synthesized heterocyclic steroids. The Journal of Steroid Biochemistry and Molecular Biology, 110(3-5), 284–294. https://doi.org/10.1016/j.jsbmb.2007.11.006
  • Hassner, A., & Michelson, M. (1962). The formation of the N—N bond in pyrazolines. The Journal of Organic Chemistry, 27(1), 298–301. https://doi.org/10.1021/jo01048a513
  • Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A., & Lesyk, R. (2009). Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. European Journal of Medicinal Chemistry, 44(4), 1396–1404.
  • http://lmmd.ecust.edu.cn/admetsar2/. (2021). http://lmmd.ecust.edu.cn/admetsar2/.
  • http://www.3dsbiovia.com/. (2021). http://www.3dsbiovia.com/.
  • http://www.swissadme.ch/. (2021). http://www.swissadme.ch/.
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Huey, R., & Morris, G. M. (2008). Using AutoDock 4 with AutoDocktools: a tutorial. The Scripps Research Institute, USA, 54–56.
  • Ibrahim-Ouali, M., & Dumur, F. (2019). Recent syntheses of steroidal derivatives containing heterocycles. Arkivoc, 2019(1), 304–339. https://doi.org/10.24820/ark.5550190.p010.988
  • Iványi, Z., Szabó, N., Huber, J., Wölfling, J., Zupkó, I., Szécsi, M., Wittmann, T., & Schneider, G. (2012). Synthesis of D-ring-substituted (5'R)- and (5'S)-17β-pyrazolinylandrostene epimers and comparison of their potential anticancer activities . Steroids, 77(5), 566–574. https://doi.org/10.1016/j.steroids.2012.02.001
  • Karataş, S., Çapan, İ., & Servi, S. (2019). Synthesis of indole and benzimidazole substituted novel 16-arylidene steroid derivatives. Letters in Organic Chemistry, 16(11), 884–890. https://doi.org/10.2174/1570178616666190305130217
  • Katritzky, A. R., Wang, M., Zhang, S., Voronkov, M. V., & Steel, P. J. (2001). Regioselective synthesis of polysubstituted pyrazoles and isoxazoles. The Journal of Organic Chemistry, 66(20), 6787–6791.
  • Kmeťová Sivoňová, M., Jurečeková, J., Tatarková, Z., Kaplán, P., Lichardusová, L., & Hatok, J. (2017). The role of CYP17A1 in prostate cancer development: structure, function, mechanism of action, genetic variations and its inhibition. General Physiology and Biophysics, 36(5), 487–499.
  • Kolo, A. M., İpek, E., Çapan, İ., & Servi, S. (2018). Synthesis of heterocyclic‐substituted novel hydroxysteroids with regioselective and stereoselective reactions. Journal of Heterocyclic Chemistry, 55(2), 492–497. https://doi.org/10.1002/jhet.3070
  • Kumar, S., Bawa, S., Drabu, S., Kumar, R., & Gupta, H. (2009). Biological activities of pyrazoline - A recent development. Recent Patents on Anti-Infective Drug Discovery, 4, 154–163.
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Léavai, A. (2002). Synthesis of 2‐pyrazolines by the reactions of α, β‐unsaturated aldehydes, ketones, and esters with diazoalkanes, nitrile imines, and hydrazines. Journal of Heterocyclic Chemistry, 39(1), 1–13. https://doi.org/10.1002/jhet.5570390101
  • Lévai, A. (2003). Synthesis of exocyclic α, β-unsaturated ketones. Arkivoc, 2004(7), 15–33. https://doi.org/10.3998/ark.5550190.0005.703
  • Loh, W.-S., Quah, C. K., Chia, T. S., Fun, H.-K., Sapnakumari, M., Narayana, B., & Sarojini, B. K. (2013). Synthesis and crystal structures of N-substituted pyrazolines. Molecules (Basel, Switzerland), 18(2), 2386–2396.
  • Mótyán, G., Zupkó, I., Minorics, R., Schneider, G., Wölfling, J., & Frank, É. (2015). Lewis acid-induced intramolecular access to novel steroidal ring D-condensed arylpyrazolines exerting in vitro cell-growth-inhibitory effects. Molecular Diversity, 19(3), 511–527. https://doi.org/10.1007/s11030-015-9593-3
  • Petrunak, E. M., Rogers, S. A., Aubé, J., & Scott, E. E. (2017). Structural and functional evaluation of clinically relevant inhibitors of steroidogenic cytochrome P450 17A1. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 45(6), 635–645.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Prieto-Martínez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Molecular docking: current advances and challenges. Tip. Revista Especializada en Ciencias Químico-Biológicas, 21, 65-87.
  • Romero-López, A., Montiel-Smith, S., Meza-Reyes, S., Merino-Montiel, P., & Vega-Baez, J. L. (2014). Synthesis of steroidal derivatives containing substituted, fused and spiro pyrazolines. Steroids, 87, 86–92.
  • Schlick, T. (2010). Molecular dynamics: basics. In Molecular modeling and simulation: an interdisciplinary guide (pp. 425–461). Springer.
  • Shaw, D. E., Deneroff, M. M., Dror, R. O., Kuskin, J. S., Larson, R. H., Salmon, J. K., Young, C., Batson, B., Bowers, K. J., Chao, J. C., Eastwood, M. P., Gagliardo, J., Grossman, J. P., Ho, C. R., Ierardi, D. J., Kolossváry, I., Klepeis, J. L., Layman, T., McLeavey, C., … Wang, S. C. (2008). Anton, a special-purpose machine for molecular dynamics simulation. Communications of the ACM, 51(7), 91–97. https://doi.org/10.1145/1364782.1364802
  • Singh, R., & Bansal, R. (2017). Investigations on 16-arylideno steroids as a new class of neuroprotective agents for the treatment of Alzheimer’s and Parkinson’s diseases. ACS Chemical Neuroscience, 8(1), 186–200.
  • Singh, R., Thota, S., & Bansal, R. (2018). Studies on 16, 17-pyrazoline substituted heterosteroids as anti-Alzheimer and anti-Parkinsonian agents using LPS induced neuroinflammation models of mice and rats. ACS Chemical Neuroscience, 9(2), 272–283.
  • Thamotharan, S., Parthasarathi, V., Dubey, S., Jindal, D. P., & Linden, A. (2004). 16-(4-Isopropylbenzylidene)androst-4-ene-3,17-dione. Acta Crystallographica Section C Crystal Structure Communications, 60(2), o110–112. https://doi.org/10.1107/S0108270103028038
  • Thamotharan, S., Parthasarathi, V., Gupta, R., Guleria, S., Jindal, D. P., & Linden, A. (2002). 16-[3-Methoxy-4-(2-piperidin-1-ylethoxy)benzylidene]-17-oxoandrost-5-en-3beta-yl acetate monohydrate. Acta Crystallographica Section C Crystal Structure Communications, 58(12), o727–729. https://doi.org/10.1107/S010827010202005X
  • Troisi, L., Florio, S., & Granito, C. (2002). Chemoselective construction of novel steroid derivatives. Steroids, 67(8), 687–693.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Zupkó, I., Molnár, J., Réthy, B., Minorics, R., Frank, E., Wölfling, J., Molnár, J., Ocsovszki, I., Topcu, Z., Bitó, T., & Puskás, L. G. (2014). Anticancer and multidrug resistance-reversal effects of solanidine analogs synthetized from pregnadienolone acetate. Molecules (Basel, Switzerland), 19(2), 2061–2076. https://doi.org/10.3390/molecules19022061

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.