217
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Natural phytocompounds physalin D, withaferin a and withanone target L-asparaginase of Mycobacterium tuberculosis: a molecular dynamics study

, &
Pages 2645-2659 | Received 31 Oct 2021, Accepted 26 Jan 2022, Published online: 08 Feb 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aung, H. P., Bocola, M., Schleper, S., & Röhm, K. H. (2000). Dynamics of a mobile loop at the active site of Escherichia coli asparaginase. Biochimica et Biophysica Acta (Bba) – Protein Structure and Molecular Enzymology, 1481(2), 349–359. https://doi.org/10.1016/S0167-4838(00)00179-5 https://doi.org/10.1016/S0167-4838(00)00179-5
  • Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91 (1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E https://doi.org/10.1016/0010-4655(95)00042-E
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., & Lindahl, E. (2010). Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6 (2), 459–466. https://doi.org/10.1021/ct900549r
  • Chatterjee, S., & Chakraborti, S. (1980). Antimicrobial activities of some antineoplastic and other withanolides. Antonie Van Leeuwenhoek, 46 (1), 59–63. https://doi.org/10.1007/BF00422229
  • Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., … Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537–544. https://doi.org/10.1038/31159
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717 https://doi.org/10.1038/srep42717
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol, 277, 396–404. [20] https://doi.org/10.1016/s0076-6879(97)77022-8
  • Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M., Eramian, D., Shen, M. y., Pieper, U., & Sali, A. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 15 (1), 5.6.1–5.6.30. https://doi.org/10.1002/0471250953.bi0506s15
  • Fiser, A., & Šali, A. (2003). Modeller: generation and refinement of homology-based protein structure models. In Charles W. Carter, Jr. and Robert M. Sweet (Eds.), Methods in enzymology (Vol. 374, pp 461–491). Elsevier. https://doi.org/10.1016/S0076-6879(03)74020-8
  • Gaurav, I., Singh, T., Thakur, A., Kumar, G., Rathee, P., Kumari, P., & Sweta, K. (2020). Synthesis, In-vitro and in-silico evaluation of silver nanoparticles with root extract of withania somnifera for antibacterial activity via binding of penicillin-binding protein-4. Current Pharmaceutical Biotechnology, 21 (15), 1674–1687. https://doi.org/10.2174/1389201021666200702152000
  • Gesto, D. S., Cerqueira, N. M., Fernandes, P. A., & Ramos, M. J. (2013). Unraveling the enigmatic mechanism of L-asparaginase II with QM/QM calculations. Journal of the American Chemical Society, 135 (19), 7146–7158. https://doi.org/10.1021/ja310165u
  • Gouzy, A., Larrouy-Maumus, G., Bottai, D., Levillain, F., Dumas, A., Wallach, J. B., Caire-Brandli, I., de Chastellier, C., Wu, T.-D., Poincloux, R., Brosch, R., Guerquin-Kern, J.-L., Schnappinger, D., Sório de Carvalho, L. P., Poquet, Y., & Neyrolles, O. (2014). Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathogens, 10 (2), e1003928 https://doi.org/10.1371/journal.ppat.1003928
  • Helvacı, S., Kökdil, G., Kawai, M., Duran, N., Duran, G., & Güvenç, A. (2010). Antimicrobial activity of the extracts and physalin D from Physalis alkekengi and evaluation of antioxidant potential of physalin D. Pharm Biol, 48 (2), 142–150. https://doi.org/10.3109/13880200903062606
  • Ji, L., Yuan, Y., Luo, L., Chen, Z., Ma, X., Ma, Z., & Cheng, L. (2012). Physalins with anti-inflammatory activity are present in Physalis alkekengi var. franchetii and can function as Michael reaction acceptors. Steroids, 77 (5), 441–447. https://doi.org/10.1016/j.steroids.2011.11.016
  • Kataria, A., Singh, J., & Kundu, B. (2019). Identification and validation of l-asparaginase as a potential metabolic target against Mycobacterium tuberculosis. Journal of Cellular Biochemistry, 120 (1), 143–154. https://doi.org/10.1002/jcb.27169
  • Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., Xia, B., Beglov, D., & Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, 10 (5), 733–755. https://doi.org/10.1038/nprot.2015.043
  • Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2021). Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure and Dynamics, 39(11), 3842–3854. https://doi.org/10.1080/07391102.2020.1772108
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lange, C., Dheda, K., Chesov, D., Mandalakas, A. M., Udwadia, Z., & Horsburgh, C. R. Jr, (2019). Management of drug-resistant tuberculosis. The Lancet, 394(10202), 953–966. https://doi.org/10.1016/S0140-6736(19)31882-3
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26 (2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Michalska, K., & Jaskolski, M. (2006). Structural aspects of L-asparaginases, their friends and relations. Acta Biochimica Polonica, 53(4), 627–640. https://doi.org/10.18388/abp.2006_3291
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30 (16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79 (3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055
  • Njire, M., Tan, Y., Mugweru, J., Wang, C., Guo, J., Yew, W., Tan, S., & Zhang, T. (2016). Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Advances in Medical Sciences, 61(1), 63–71. https://doi.org/10.1016/j.advms.2015.09.007
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25 (13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Sharma, D., Singh, K., Singh, K., & Mishra, A. (2019). Insights into the microbial L-Asparaginases: from production to practical applications. Current Protein & Peptide Science, 20 (5), 452–464. https://doi.org/10.2174/1389203720666181114111035
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega . Molecular Systems Biology, 7(1), 539 https://doi.org/10.1038/msb.2011.75
  • Singh, A., & Mishra, A. (2021). Leucoefdin a potential inhibitor against SARS CoV-2 Mpro. Journal of Biomolecular Structure & Dynamics, 39(12), 4427–4426. https://doi.org/10.1080/07391102.2020.1777903
  • Turner, P. (2005). XMGRACE, Version 5.1. 19. 19. Center for Coastal and Land-Margin Research. Oregon Graduate Institute of Science and Technology.
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem, 31 (4), 671–690. https://doi.org/10.1002/jcc.21367
  • Vanommeslaeghe, K., & MacKerell, A. D. Jr, (2012). Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. Journal of Chemical Information and Modeling, 52(12), 3144–3154. https://doi.org/10.1021/ci300363c
  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England), 25(9), 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–410. https://doi.org/10.1093/nar/gkm290

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.