269
Views
2
CrossRef citations to date
0
Altmetric
Research articles

Deciphering the immunogenic T-cell epitopes from spike protein of SARS-CoV-2 concerning the diverse population of India

, , & ORCID Icon
Pages 2713-2732 | Received 25 Jul 2021, Accepted 28 Jan 2022, Published online: 08 Feb 2022

References

  • Ahammad, I., & Lira, S. S. (2020). Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. International Journal of Biological Macromolecules, 162, 820–837. https://doi.org/10.1016/j.ijbiomac.2020.06.213
  • Ahmad, S., Waheed, Y., Ismail, S., Abbasi, S. W., & Najmi, M. H. (2021). A computational study to disclose potential drugs and vaccine ensemble for COVID-19 conundrum.Journal of Molecular Liquids, 324(324), 114734 https://doi.org/10.1016/j.molliq.2020.114734
  • Al Naqbi, H., Mawart, A., Alshamsi, J., Al Safar, H., & Tay, G. K., (2021). Major histocompatibility complex (MHC) associations with diseases in ethnic groups of the Arabian Peninsula. Immunogenetics, 73(2), 131–152. https://doi.org/10.1007/s00251-021-01204-x
  • Attia, Y. A., El-Saadony, M. T., Swelum, A. A., Qattan, S. Y. A., Al-Qurashi, A. D., Asiry, K. A., Shafi, M. E., Elbestawy, A. R., Gado, A. R., Khafaga, A. F., Hussein, E. O. S., Ba-Awadh, H., Tiwari, R., Dhama, K., Alhussaini, B., Alyileili, S. R., El-Tarabily, K. A., & Abd El-Hack, M. E. (2021). COVID-19: Pathogenesis, advances in treatment and vaccine development and environmental impact-an updated review. Environmental Science and Pollution Research International, 28(18), 22241–22264. https://doi.org/10.1007/s11356-021-13018-1
  • Bachmair, A., Finley, D., & Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science (New York, N.Y.), 234(4773), 179–186. https://doi.org/10.1126/science.3018930
  • Bahrami, A. A., Payandeh, Z., Khalili, S., Zakeri, A., & Bandehpour, M. (2019). Immunoinformatics: In Silico approaches and computational design of a multi-epitope, immunogenic protein. International Reviews of Immunology, 38(6), 307–322. https://doi.org/10.1080/08830185.2019.1657426
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics., 81(8), 3684–3690.  https://doi.org/10.1063/1.448118
  • Berti, F., & Adamo, R. (2018). Antimicrobial glycoconjugate vaccines: An overview of classic and modern approaches for protein modification. Chemical Society Reviews, 47(24), 9015–9025. https://doi.org/10.1039/c8cs00495a
  • BIOVIA, Dassault Systèmes (2020). [Biovia Discovery Studio], [version 4 Dassault Systery ].
  • Brant, A. C., Tian, W., Majerciak, V., Yang, W., & Zheng, Z. M. (2021). SARS-CoV-2: From its discovery to genome structure, transcription, and replication. Cell & Bioscience, 11(1), 136 https://doi.org/10.1186/s13578-021-00643-z
  • Briguglio, M., Bona, A., Porta, M., Dell'Osso, B., Pregliasco, F. E., & Banfi, G. (2020). Disentangling the hypothesis of host dysosmia and SARS-CoV-2: The bait symptom that hides neglected neurophysiological routes. Frontiers in Physiology., 5, 11–671.
  • Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 17, 153 https://doi.org/10.1186/1471-2105-7-153
  • Bui, H. H., Sidney, J., Li, W., Fusseder, N., & Sette, A. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics, 8(1), 361 https://doi.org/10.1186/1471-2105-8-361
  • Busquet, F., Hartung, T., Pallocca, G., Rovida, C., & Leist, M. (2020). Harnessing the power of novel animal-free test methods for the development of COVID-19 drugs and vaccines. Archives of Toxicology, 94(6), 2263–2272. https://doi.org/10.1007/s00204-020-02787-2
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Kesmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 8(1), 361.
  • Caobi, A., Nair, M., & Raymond, A. D. (2020). Extracellular vesicles in the pathogenesis of viral infections in humans. Viruses, 12(10), 1200. https://doi.org/10.3390/v12101200
  • Chatterjee, R., Ghosh, M., Sahoo, S., Padhi, S., Misra, N., Raina, V., Suar, M., & Son, Y. O. (2021). Next-generation bioinformatics approaches and resources for coronavirus vaccine discovery and development–A perspective review. Vaccines (Vaccines, 9(8), 812. https://doi.org/10.3390/vaccines9080812
  • Chatterjee, R., Sahoo, P., Mahapatra, S. R., Dey, J., Ghosh, M., Kushwaha, G. S., Misra, N., Suar, M., Raina, V., & Son, Y. O. (2021). Development of a conserved chimeric vaccine for induction of strong immune response against Staphylococcus aureus using immunoinformatics approaches. Vaccines (Vaccines, 9(9), 1038. https://doi.org/10.3390/vaccines9091038
  • Choudhury, A., & Mukherjee, S. (2020). In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. Journal of Medical Virology, 92(10), 2105–2113. https://doi.org/10.1002/jmv.25987
  • Choudhury, A., Das, N. C., Patra, R., & Mukherjee, S. (2021). In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. Journal of Medical Virology, 93(4), 2476–2486. https://doi.org/10.1002/jmv.26776
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Contini, C., Di Nuzzo, M., Barp, N., Bonazza, A., De Giorgio, R., Tognon, M., & Rubino, S. (2020). The novel zoonotic COVID-19 pandemic: An expected global health concern. Journal of Infection in Developing Countries, 14(3), 254–264. https://doi.org/10.3855/jidc.12671
  • Crooke, S. N., Ovsyannikova, I. G., Kennedy, R. B., & Poland, G. A. (2020). Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Scientific Reports, 10(1), 14179 https://doi.org/10.1038/s41598-020-70864-8
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. Journal of Chemical Physics., 98(12), 10089–10092.  https://doi.org/10.1063/1.464397
  • Das, N. C., Patra, R., Gupta, P. S. S., Ghosh, P., Bhattacharya, M., Rana, M. K., & Mukherjee, S. (2021). Designing of a novel multi-epitope peptide based vaccine against Brugia malayi: An in silico approach . Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 87, 104633 https://doi.org/10.1016/j.meegid.2020.104633
  • Das, N. C., Sen Gupta, P. S., Biswal, S., Patra, R., Rana, M. K., & Mukherjee, S. (2021). In-silico evidences on filarial cystatin as a putative ligand of human TLR4. Journal of Biomolecular Structure and Dynamics., 6, 1–17. https://doi.org/10.1080/07391102.2021.1918252
  • Debnath, M., Banerjee, M., & Berk, M. (2020). Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology, 34(7), 8787–8795. https://doi.org/10.1096/fj.202001115R
  • Dehury, B., Raina, V., Misra, N., & Suar, M. (2021). Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: A molecular dynamics simulations study. Journal of Biomolecular Structure & Dynamics, 39(18), 7231–7245. https://doi.org/10.1080/07391102.2020.1802348
  • Dendrou, C. A., Petersen, J., Rossjohn, J., & Fugger, L. (2018). HLA variation and disease. Nature Reviews. Immunology, 18(5), 325–339. https://doi.org/10.1038/nri.2017.143
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 4, 1–19. https://doi.org/10.1080/14760584.2022.2021882
  • Dey, J., Mahapatra, S. R., Singh, P., Patro, S., Kushwaha, G. S., Misra, N., & Suar, M. (2021). B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microbial Pathogenesis, 160, 105171 https://doi.org/10.1016/j.micpath.2021.105171
  • Dhall, A., Patiyal, S., Sharma, N., Usmani, S. S., & Raghava, G. P. S. (2021). Computer-aided prediction and design of IL-6 inducing peptides: IL-6 plays a crucial role in COVID-19. Briefings in Bioinformatics, 22(2), 936–945. https://doi.org/10.1093/bib/bbaa259
  • Dhama, K., Patel, S. K., Sharun, K., Pathak, M., Tiwari, R., Yatoo, M. I., Malik, Y. S., Sah, R., Rabaan, A. A., Panwar, P. K., Singh, K. P., Michalak, I., Chaicumpa, W., Martinez-Pulgarin, D. F., Bonilla-Aldana, D. K., & Rodriguez-Morales, A. J. (2020). SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel Med Infect Dis, 37, 101830 https://doi.org/10.1016/j.tmaid.2020.101830
  • Dhama, K., Sharun, K., Tiwari, R., Dadar, M., Malik, Y. S., Singh, K. P., & Chaicumpa, W. (2020). COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines & Immunotherapeutics, 16(6), 1232–1238. https://doi.org/10.1080/21645515.2020.1735227
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biol Direct, 8(8), 30 https://doi.org/10.1186/1745-6150-8-30
  • Diez-Rivero, C. M., Chenlo, B., Zuluaga, P., & Reche, P. A. (2010). Quantitative modeling of peptide binding to TAP using support vector machine. Proteins, 78(1), 63–72. https://doi.org/10.1002/prot.22535
  • Dorosti, H., Eslami, M., Negahdaripour, M., Ghoshoon, M. B., Gholami, A., Heidari, R., Dehshahri, A., Erfani, N., Nezafat, N., & Ghasemi, Y. (2019). Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. Journal of Biomolecular Structure & Dynamics, 37(13), 3524-3535 Dynam. https://doi.org/10.1080/07391102.2018.1519460
  • Ehlers, A. M., Blankestijn, M. A., Knulst, A. C., Klinge, M., & Otten, H. G. (2019). Can alternative epitope mapping approaches increase the impact of B-cell epitopes in food allergy diagnostics? Clinical & Experimental Allergy, 49(1), 17–26. https://doi.org/10.1111/cea.13291
  • El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E., & Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic Acids Research, 47(D1), D427–D432. https://doi.org/10.1093/nar/gky995
  • Flower, D. R., Doytchinova, I., Zaharieva, N., & Dimitrov, I. (2017). Immunogenicity prediction by VaxiJen: A ten-year overview. Journal of Proteomics & Bioinformatics, 10(11), 298-310. https://doi.org/10.4172/jpb.1000454
  • Flower, D. R., Macdonald, I. K., Ramakrishnan, K., Davies, M. N., & Doytchinova, I. A. (2010). Computer aided selection of candidate vaccine antigens. Immunome Research, 6 Suppl 2(2), S13 https://doi.org/10.1186/1745-7580-6-S2-S1
  • Fogolari, F., Brigo, A., & Molinari, H. (2003). Protocols for MM/PBSA molecular dynamics simulations of proteins. Biophysical Journal., 85(1), 159–166. https://doi.org/10.1016/S0006-3495(03)74462-2
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. (In) John M. Walker (ed): The Proteomics Protocols Handbook., Humana Press. pp. 571–607
  • Gauthier, J., Vincent, A. T., Charette, S. J., & Derome, N. (2019). A brief history of bioinformatics. Briefings in Bioinformatics, 20(6), 1981–1996. https://doi.org/10.1093/bib/bby063
  • Geng, J., Zaitouna, A. J., & Raghavan, M. (2018). Selected HLA-B allotypes are resistant to inhibition or deficiency of the transporter associated with antigen processing (TAP). PLoS Pathogens, 14(7), e1007171 https://doi.org/10.1371/journal.ppat.1007171
  • Ghaebi, M., Osali, A., Valizadeh, H., Roshangar, L., & Ahmadi, M. (2020). Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: Challenges and chances. Journal of Cellular Physiology, 235(12), 9098–9109. https://doi.org/10.1002/jcp.29771
  • Ghorbani, A., Zare, F., Sazegari, S., Afsharifar, A., Eskandari, M. H., & Pormohammad, A. (2020). Development of a novel platform of virus-like particle (VLP)-based vaccine against COVID-19 by exposing epitopes: An immunoinformatics approach. New Microbes and New Infections, 38, 100786–102975. https://doi.org/10.1016/j.nmni.2020.100786
  • Gill, S. C., & von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182(2), 319–326. https://doi.org/10.1016/0003-2697(89)90602-7
  • Gohlke, H., & Case, D. A. (2004). Converging free energy estimates: MM-PB (GB) SA studies on the protein-protein complex RasRaf. Journal of Computational Chemistry, 25(2), 238–250. https://doi.org/10.1002/jcc.10379
  • Gonzalez-Galarza, F. F., McCabe, A., Santos, E. J. M. D., Jones, J., Takeshita, L., Ortega-Rivera, N. D., Cid-Pavon, G. M. D., Ramsbottom, K., Ghattaoraya, G., Alfirevic, A., Middleton, D., & Jones, A. R. (2020). Allele frequency net database (AFND) 2020 update: Gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Research, 48(D1), D783–D788.
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S, Open Source Drug Discovery Consortium (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957 https://doi.org/10.1371/journal.pone.0073957
  • Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Haft, D. H., Selengut, J. D., Richter, A. R., Harkins, D., Basu, M. K., & Beck, E. (2013). TIGRFAMs and genome properties in 2013. Nucleic Acids Research, 41(Database issue), D387–D395.
  • Hammer, S. E., Ho, C.-S., Ando, A., Rogel-Gaillard, C., Charles, M., Tector, M., Tector, A. J., & Lunney, J. K. (2020). Importance of the major histocompatibility complex (swine leukocyte antigen) in swine health and biomedical research. Annual Review of Animal Biosciences, 8(1), 171–198. https://doi.org/10.1146/annurev-animal-020518-115014
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hwang, W., Lei, W., Katritsis, N. M., MacMahon, M., Chapman, K., & Han, N. (2021). Current and prospective computational approaches and challenges for developing COVID-19 vaccines. Advanced Drug Delivery Reviews, 172, 249–274.
  • Ikai, A. J. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88(6), 1895–1898.
  • Inchingolo, A. D., Dipalma, G., Inchingolo, A. M., Malcangi, G., Santacroce, L., D’Oria, M. T., Isacco, C. G., Bordea, I. R., Candrea, S., Scarano, A., Morandi, B., Del Fabbro, M., Farronato, M., Tartaglia, G. M., Balzanelli, M. G., Ballini, A., Nucci, L., Lorusso, F., Taschieri, S., & Inchingolo, F. (2021). The 15-months clinical experience of SARS-CoV-2: A literature review of therapies and adjuvants. Antioxidants (Antioxidants, 10(6), 881. https://doi.org/10.3390/antiox10060881
  • Ita, K. (2021). Coronavirus disease (COVID-19): Current status and prospects for drug and vaccine development. Archives of Medical Research, 52(1), 15–24. https://doi.org/10.1016/j.arcmed.2020.09.010
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. Journal of Chemical Physics., 114(5), 2090–2098.  https://doi.org/10.1063/1.1332996
  • Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. (2005). Immunobiology (p. 600). Garland Science Publishing.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics., 79(2), 926–935. − https://doi.org/10.1063/1.445869
  • Jose, S., Gupta, M., Sharma, U., Quintero-Saumeth, J., & Dwivedi, M. (2022). Potential of phytocompounds from Brassica oleracea targeting S2-domain of SARS-CoV-2 spike glycoproteins: Structural and molecular insights. Journal of Molecular Structure., 1254, 132369. https://doi.org/10.1016/j.molstruc.2022.132369
  • Juanes-Velasco, P., Landeira-Viñuela, A., Acebes-Fernandez, V., Hernández, Á. P., Garcia-Vaquero, M. L., Arias-Hidalgo, C., Bareke, H., Montalvillo, E., Gongora, R., & Fuentes, M. (2021). Deciphering human leukocyte antigen susceptibility maps from immunopeptidomics characterization in oncology and infections. Frontiers in Cellular and Infection Microbiology, 11, 642583.
  • Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., & Nielsen, M. (2017). NetMHCpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. Journal of Immunology (Baltimore, Md. : 1950), 199(9), 3360–3368. https://doi.org/10.4049/jimmunol.1700893
  • Karimzadeh, S., Bhopal, R. N., & Tien, H. (2021). Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: Comparison with other respiratory viruses. Epidemiology and Infection, 14(149), e96.
  • Kasahara, M., & Flajnik, M. F. (2019). Origin and evolution of the specialized forms of proteasomes involved in antigen presentation. Immunogenetics, 71(3), 251–261. https://doi.org/10.1007/s00251-019-01105-0
  • Kaur, S. P., & Gupta, V. (2020). COVID-19 vaccine: A comprehensive status report. Virus Research, 288, 191702–198114. https://doi.org/10.1016/j.virusres.2020.198114
  • Khan, M., Adil, S. F., Alkhathlan, H. Z., Tahir, M. N., Saif, S., Khan, M., & Khan, S. T. (2020). COVID-19: A global challenge with old history, epidemiology and progress so far. Molecules, 26(1), 39. https://doi.org/10.3390/molecules26010039
  • Khan, S., Khan, A., Rehman, A. U., Ahmad, I., Ullah, S., Khan, A. A., Ali, S. S., Afridi, S. G., & Wei, D.-Q. (2019). Immunoinformatics and structural vaccinology driven prediction of multi-epitope vaccine against Mayaro virus and validation through in-silico expression. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 73, 390–400. https://doi.org/10.1016/j.meegid.2019.06.006
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0
  • Letunic, I., & Bork, P. (2018). 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 46(D1), D493–D496. https://doi.org/10.1093/nar/gkx922
  • Li, H., Wang, Y., Mingyu J., Pei, F., Zhou, Q., Zhou, Y., Hong, Y., Han, S., Wang, J., Wang, Q., Qiang, Q., & Wang, Y. (2020). Transmission routes analysis of SARS-CoV-2: A systematic review and case report. Frontiers in Cell and Developmental Biology., 10, 8–618.
  • Lim, H. X., Lim, J., & Poh, C. L. (2021). Identification and selection of immunodominant B and T cell epitopes for dengue multi-epitope-based vaccine. Medical Microbiology and Immunology, 210(1), 1–11. https://doi.org/10.1007/s00430-021-00700-x
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
  • Luteijn, R. D., Praest, P., Thiele, F., Sadasivam, S. M., Singethan, K., Drijfhout, J. W., Bach, C., de Boer, S. M., Lebbink, R. J., Tao, S., Helfer, M., Bach, N. C., Protzer, U., Costa, A. I., Killian, J. A., Drexler, I., & Wiertz, E. J. H. J. (2020). A broad-spectrum antiviral peptide blocks infection of viruses by binding to phosphatidylserine in the viral envelope. Cells, 9(9), 1989. https://doi.org/10.3390/cells9091989
  • Ma, Y., Tang, K., Zhang, Y., Zhang, C., Cheng, L., Zhang, F., Zhuang, R., Jin, B., & Zhang, Y. (2020). Protective CD8+ T-cell response against Hantaan virus infection induced by immunization with designed linear multi-epitope peptides in HLA-A2.1/Kb transgenic mice. Virology Journal, 17(1), 146 https://doi.org/10.1186/s12985-020-01421-y
  • Madlala, T., Adeleke, V. T., Fatoba, A. J., Okpeku, M., Adeniyi, A. A., & Adeleke, M. A. (2021). Designing multiepitope-based vaccine against Eimeria from immune mapped protein 1 (IMP-1) antigen using immunoinformatic approach. Scientific Reports, 11(1), 18295 https://doi.org/10.1038/s41598-021-97880-6
  • Mahapatra, S. R., Dey, J., Kaur, T., Sarangi, R., Bajoria, A. A., Kushwaha, G. S., Misra, N., & Suar, M. (2021). Immunoinformatics and molecular docking studies reveal a novel Multi-Epitope peptide vaccine against pneumonia infection. Vaccine, 39(42), 6221–6237. https://doi.org/10.1016/j.vaccine.2021.09.025
  • Mahapatra, S. R., Dey, J., Kushwaha, G. S., Puhan, P., Mohakud, N. K., Panda, S. K., Lata, S., Misra, N., & Suar, M. (2021). Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella serovars. Journal of Biomolecular Structure and Dynamics., 31, 1–13. https://doi.org/10.1080/07391102.2021.1964600
  • McMillan, P., & Uhal, B. D. (2020). COVID-19-A theory of autoimmunity to ACE-2. MOJ Immunology, 7(1), 17–19.
  • Millet, J. K., & Whittaker, G. R. (2015). Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research, 202, 120–134. https://doi.org/10.1016/j.virusres.2014.11.021
  • Mousavizadeh, L., & Ghasemi, S. (2021). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology, and Infection = Wei Mian yu Gan Ran za Zhi, 54(2), 159–163. https://doi.org/10.1016/j.jmii.2020.03.022
  • National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US (1988).), National Center for Biotechnology Information; [cited 2021 Oct 27]. Available from: https://www.ncbi.nlm.nih.gov/
  • Nielsen, M., Lundegaard, C., Lund, O., & Keşmir, C. (2005). The role of the proteasome in generating cytotoxic T cell epitopes: Insights obtained from improved predictions of proteasomal cleavage. Immunogenetics, 57(1-2), 33–41.
  • Oli, A. N., Obialor, W. O., Ifeanyichukwu, M. O., Odimegwu, D. C., Okoyeh, J. N., Emechebe, G. O., Adejumo, S. A., & Ibeanu, G. C. (2020). Immunoinformatics and vaccine development: An overview. ImmunoTargets and Therapy, 9, 13–30.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pontius, J., Richelle, J., & Wodak, S. J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology, 264(1), 121–136. https://doi.org/10.1006/jmbi.1996.0628
  • Raut, V. P., Agashe, M. A., Stuart, S. J., & Latour, R. A. (2005). Molecular dynamics simulations of peptide − surface interactions. Langmuir: The ACS Journal of Surfaces and Colloids, 21(4), 1629–1639.
  • Rehman, S. U., Shafique, L., Ihsan, A., & Liu, Q. (2020). Evolutionary Trajectory for the Emergence of Novel Coronavirus SARS-CoV-2. Pathogens, 9(3), 240. https://doi.org/10.3390/pathogens9030240
  • Rudolph, M. G., Stanfield, R. L., & Wilson, I. A. (2006). How TCRs bind MHCs, peptides, and coreceptors. Annual Review of Immunology, 24, 419–466. https://doi.org/10.1146/annurev.immunol.23.021704.115658
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics., 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sant, A. J., DiPiazza, A. T., Nayak, J. L., Rattan, A., & Richards, K. A. (2018). CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunological Review, 284(1), 91–105. https://doi.org/10.1111/imr.12662
  • Santopolo, S., Riccio, A., & Santoro, M. G. (2021). The biogenesis of SARS-CoV-2 spike glycoprotein: Multiple targets for host-directed antiviral therapy. Biochemical and Biophysical Research Communications, 538, 80–87. https://doi.org/10.1016/j.bbrc.2020.10.080
  • Schrödinger, L., & DeLano, W. (2020). PyMOL. Retrieved from http://www.pymol.org/pymol
  • Sharma, N., Patiyal, S., Dhall, A., Pande, A., Arora, C., & Raghava, G. P. S. (2021). AlgPred 2.0: An improved method for predicting allergenic proteins and mapping of IgE epitopes. Brief Bioinform, 20(4), bbaa294.
  • Sohail, M. S., Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2021). In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Advanced Drug Delivery Reviews, 171, 29–47. https://doi.org/10.1016/j.addr.2021.01.007
  • Springer, I., Tickotsky, N., & Louzoun, Y. (2021). Contribution of T cell receptor alpha and beta CDR3, MHC typing, V and J genes to peptide binding prediction. Frontiers in Immunology, 12, 664514. https://doi.org/10.3389/fimmu.2021.664514
  • Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., Rao, B. S., Kiryutin, B., Galperin, M. Y., Fedorova, N. D., & Koonin, E. V. (2001). The COG database: New developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 29(1), 22–28.
  • Torreele, E., & Amon, J. J. (2021). Equitable COVID-19 vaccine access. Health and Human Rights, 23(1), 273–288.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vita, R., Mahajan, S., Overton, J. A., Dhanda Sk, Martini, S., Cantrell Jr, Wheeler Dk, Sette, A., & Peters, B. (2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339-D343.
  • V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2.Nature Reviews Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  • Vrba, S. M., Kirk, N. M., Brisse, M. E., Liang, Y., & Ly, H. (2020). Development and applications of viral vectored vaccines to combat zoonotic and emerging public health threats. Vaccines, 8(4), 680. https://doi.org/10.3390/vaccines8040680
  • Wang, J., Alekseenko, A., Kozakov, D., & Miao, Y. (2019). Improved modeling of peptide-protein binding through global docking and accelerated molecular dynamics simulations. Frontiers in Molecular Biosciences, 6, 112. https://doi.org/10.3389/fmolb.2019.00112
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Yarmarkovich, M., Warrington, J. M., Farrel, A., & Maris, J. M. (2020). Identification of SARS-CoV-2 vaccine epitopes predicted to induce long-term population-scale immunity. Cell Reports. Medicine, 1(3), 100036 https://doi.org/10.1016/j.xcrm.2020.100036
  • Zhang, Y., He, X., Zhai, J., Ji, B., Man, V. H., & Wang, J. (2021). In silico binding profile characterization of SARS-CoV-2 spike protein and its mutants bound to human ACE2 receptor. Briefings in Bioinformatics, 22(6) https://doi.org/10.1093/bib/bbab188
  • Zhao, S., Zhuang, Z., Cao, P., Ran, J., Gao, D., Lou, Y., Yang, L., Cai, Y., Wang, W., He, D., & Wang, M. H. (2020). Quantifying the association between domestic travel and the exportation of novel coronavirus (2019-nCoV) cases from Wuhan, China in 2020: A correlational analysis. Journal of Travel Medicine, 27(2), 22. https://doi.org/10.1093/jtm/taaa022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.