353
Views
3
CrossRef citations to date
0
Altmetric
Research articles

Isolation and biological evaluation 7-hydroxy flavone from Avicennia officinalis L: insights from extensive in vitro, DFT, molecular docking and molecular dynamics simulation studies

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2848-2860 | Received 14 Aug 2021, Accepted 03 Feb 2022, Published online: 22 Feb 2022

References

  • Aksnes, D. W., Standnes, A., & Andersen, Ø. M. (1996). Complete assignment of the 1H and 13C NMR spectra of flavone and it’s a ring hydroxyl derivatives. Magnetic Resonance in Chemistry, 34(10), 820–823. https://doi.org/10.1002/(SICI)1097-458X(199610)34:10<820::AID-OMR966>3.0.CO;2-Q
  • Alaklabi, A., Arif, I. A., Ahamed, A., Kumar, R. S., & Idhayadhulla, A. (2018). Evaluation of antioxidant and anticancer activities of chemical constituents of the Saururus chinensis root extracts. Saudi Journal of Biological Sciences, 25(7), 1387–1392. https://doi.org/10.1016/j.sjbs.2016.12.021
  • Anjaneyulu, A.S.R., Murthy, Y.L.N., Rao, V.L., & Sreedhar, K., (2003). Chemical examination of the mangrove plant Avicennia officinalis. Indian Journal of Chemistry -Section B, 42, 3117–3119.
  • Assaw, S., Isyraq, M., Amir, H. M., Khaw, T. K., Bakar, K., MohdRadzi, S. A., & Mazlan, N. W. (2020). Antibacterial and antioxidant activity of naphthofuranquinones from the twigs of tropical mangrove Avicennia officinalis. Natural Product Research, 34(16), 2403–2406. https://doi.org/10.1080/14786419.2018.1538220
  • Arora, S., & Itankar, P. (2018). Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. Journal of Traditional and Complementary Medicine, 8(4), 476–482. https://doi.org/10.1016/j.jtcme.2017.10.002
  • Abu-Niaaj, L., & Katampe, I. (2018). Isolation and characterization of flavones from Artemisia monosperma. Pharmacognosy Journal, 10(5), 1018–1023. https://doi.org/10.5530/pj.2018.5.173
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Das, S. K., Samantaray, D., & Mahapatra, A. (2018). Pharmacological activities of leaf and bark extracts of a medicinal mangrove plant Avicennia officinalis L. Clinical Phytoscience, 4, 13.
  • Dhamodharan, P., Ponnusamy, N., Odumpatta, R., Lulu, S., & Arumugam, M. (2018). Computational investigation of marine bioactive compounds against E6 oncoprotein of human papilloma virus-HPV16. Journal of Applied Pharmaceutical Science, 8, 23–32.
  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐consistent molecular‐orbital methods. IX. An extended Gaussian type basis for molecular‐orbital studies of organic molecules. Journal of Chemical Physics, 54(2), 724–728. https://doi.org/10.1063/1.1674902
  • Ekalu, A., & Habila, J. D. (2020). Flavonoids: isolation, characterization, and health benefits. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 45. https://doi.org/10.1186/s43088-020-00065-9
  • Kostrzewa-Susłow, E., & Janeczko, T. (2012). Microbial transformations of 7-hydroxyflavanone. The Scientific World Journal, 2012, 254929. https://doi.org/10.1100/2012/254929
  • Frisch, M. J., Trucks, G. W., & Schlegel, H. B. (2009). Gaussian 09. Gaussian, Inc.
  • Ghosh, D., SumantaMondal, S., & Ramakrishna,. (2019). Spectroscopic characterization of phytoconstituents isolated from a rare mangrove aegialitisrotundifoliaRoxb leaves and evaluation of antimicrobial activity of the crude extract. Asian Journal of Pharmaceutical Research, 9(12), 220–224.
  • Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. Journal of Chemical Physics, 56(5), 2257–2261. https://doi.org/10.1063/1.1677527
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213–222. https://doi.org/10.1007/BF00533485
  • Jasril, L. Y., Mooi, A. M., Ali, M. A., Sukari, A. A., Rahman, A. G., Othman, H., Kikuzaki, N. & Nakatani, (2003). Antioxidant and antitumor promoting activities of the flavonoids from Hedychiumthyrsiforme. Pharmaceutical Biology, 41(7), 506–511.
  • Jha, R. K., Khan, R. J., Parthiban, A., Singh, E., Jain, M., Amera, G. M., Singh, R. P., Purvaja, R., Ramesh, R., Sachithanandam, V., Muthukumaran, J., & Singh, A. K. (2021). Identifying the natural compound Catechin from tropical mangrove plants as a potential lead candidate against 3CLpro from SARS-CoV-2: An integrated in-silico approach. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2021.1988710
  • Kaliamurthi, S., & Selvaraj, G. (2016). Insight on Excoecaria agallocha: An overview. Natural Products Chemistry & Research, 4(2), 1–2.
  • Kar, D. R., Sudhir Kumar, P., Ghosh, G., & Sahu, P. K. (2014). Isolation and characterization of flavone from the aerial parts of Avicennia alba blume. Oriental Journal of Chemistry, 30(2), 705–711. https://doi.org/10.13005/ojc/300242
  • Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81–251.
  • Khushi, S., Hasan, M. M., Al-Hossain, A. S. M. M., Hossain, M. L., & Sadhu, S. K. (2016). Medicinal activity of Avicennia officinalis: Evaluation of phytochemical and pharmacological properties. Saudi Journal of Medical and Pharmaceutical Science, 2, 250–255.
  • Kikuzaki, H., & Nakatani, N. (1993). Antioxidant effects of some ginger constituents. Journal of Food Science, 58(6), 1407–1410. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
  • Kishore, N., Twilley, D., van Staden, A. B., Verma, P., Singh, B., Cardinali, G., Kovacs, D., Picardo, M., Kumar, V., & Lall, N. (2018). Isolation of flavonoids and flavonoid glycosides from Myrsineafricana and their inhibitory activities against mushroom tyrosinase. Journal of Natural Products, 81(1), 49–56.
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m Epub 2014 Jun 19. PMID: 24850022.
  • Lalitha, P., Veena, V., Vidhyapriya, P., Lakshmi, P., Krishna, R., & Sakthivel, N. (2016). Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30. Apoptosis : An International Journal on Programmed Cell Death, 21(5), 566–577. https://doi.org/10.1007/s10495-016-1221-x
  • Lalitha, P., Parthiban, A., Sachithanandam, V., Purvaja, R., & Ramesh, R. (2021). Antibacterial and antioxidant potential of GC-MS analysis of crude ethyl acetate extract from the tropical mangrove plant Avicennia officinalis L. South African Journal of Botany, 142, 149–155. https://doi.org/10.1016/j.sajb.2021.06.023
  • Lee, S. K., Mbwambo, Z. H., Chung, H. S., Luyengi, L., Gamez, E. J. C., Mehta, R. G., Kinghorn, A. D., & Pezzuto, J. M. (1998). Evaluation of the antioxidant potential of natural products. Combinatorial Chemistry & High Throughput Screening, 1(1), 35–46. https://doi.org/10.2174/138620730101220118151526
  • Li, Q., Cheng, L., Shen, K., Jin,., Li, H., Cheng, Y., & Ma, X. (2019). Efficacy and safety of Bcl-2 inhibitor venetoclax in hematological malignancy: A systematic review and meta-analysis of clinical trials. Frontiers in Pharmacology, 10(21), 697.
  • Majumdar, S. G., Ghosh., & Thakur, S. (1981). Velutin from Avicenniaofficinalis Linn. Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry., 20, 632–632.
  • Mangoyi, R., Midiwo, J., & Mukanganyama, S. (2015). Isolation and characterization of an antifungal compound 5-hydroxy-7,4’-dimethoxyflavone from Combretum zeyheri. BMC Complementary and Alternative Medicine, 15, 405.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Middleton, J. E., Kandaswami, C., & Theoharides, T. (2000). The effects of plant flavonoids on mammalian cells: Implication for inflammation, heart disease, and anticancer. Pharmacological Reviews, 52, 673–751.
  • Murakami, A., Morita, H., Safitri, R., Ramlan, A., Koshimizu, K., & Ohigashi, H. (1998). Screening for in vitro anti-tumor-promoting activities of edible plants from Indonesia. Cancer Detection and Prevention, 22(6), 516–525. https://doi.org/10.1046/j.1525-1500.1998.00071.x
  • Nisar, A., Bono, A., Ahmad, H., Ambreen, L. A., & MahamM, M. (2019). Identification of flavonoids from the leaves extract of mangrove (Rhizophoraapiculata). Recent Advances in Biology and Medicine, 5, 1–7.
  • Parthiban, A., Kumaravel, M., Muthukumaran, J., Rukkumani, R., Krishna, R., & Rao, H. S. P. (2015). Design, synthesis, in vitro and in silico anti-cancer activity of 4H-chromenes with C4-active methine groups. Medicinal Chemistry Research, 24(3), 1226–1240. https://doi.org/10.1007/s00044-014-1190-y
  • Parthiban, A., & Makam, P. (2020). Dual active 1, 4-dihydropyridine derivatives: Design, green synthesis and in vitro anti-cancer and anti-oxidant studies. Bioorganic Chemistry, 105, 104379. https://doi.org/10.1016/j.bioorg.2020.104379
  • Parthiban, A., Muthukumaran, J., Manhas, A., Srivastava, K., Krishna, R., & Rao, H. S. P. (2015). Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates. Bioorganic & Medicinal Chemistry Letters, 25(20), 4657–4663. https://doi.org/10.1016/j.bmcl.2015.08.030
  • Parthiban, A., Muthukumaran, J., Moushumi, P. A., Jayachandran, S., Krishna, R., & Rao, H. S. P. (2014). Design, synthesis, molecular docking, and biological evaluation of N-methyl-3-nitro-4-(nitromethyl)-4H-chromen-2-amine derivatives as potential anti-cancer agents. Medicinal Chemistry Research, 23(2), 642–659. https://doi.org/10.1007/s00044-013-0642-0
  • Parthiban, A., Sivasankar, R., Sachithanandam, V., Ajmal Khan, S., Jayshree, A., Murugan, K., & Sridhar, R. (2021). An integrative review on bioactive compounds from Indian mangroves for future drug discovery. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2021.10.004
  • Premanathan, M., Kathiresan, K., & Nakashima, H., (1999). Mangrove Halophytes: A source of antiviral substances. South Pacific Study, 19, 49–57.
  • Rao, H. S. P., & Parthiban, A. (2014). One-pot pseudo three-component reaction of nitroketene-N,S-acetals and aldehydes for synthesis of highly functionalized hexa-substituted 1,4-dihydropyridines. Organic & Biomolecular Chemistry, 12 (32), 6223–6238. https://doi.org/10.1039/c4ob00628c
  • Ramasamy, J., Kandasamy, R., Palanisamy, S., & Nadesan, S. (2019). Optimization of ultrasonic. ‐assisted extraction of flavonoids and anti‐oxidant capacity from the whole plant of Andrographis echioides (L.) nees by response surface methodology and chemical composition analysis. Pharmacognosy Magazine, 15, 547–556.
  • Ramos, J., Muthukumaran, J., Freire, F., Paquete-Ferreira, J., Otrelo-Cardoso, A. R., Svergun, D., Panjkovich, A., & Santos-Silva, T. (2019). Shedding light on the interaction of human anti-apoptotic Bcl-2 protein with ligands through biophysical and in silico studies. International Journal of Molecular Sciences, 20(4), 860. https://doi.org/10.3390/ijms20040860
  • Sachithanandam, V., Lalitha, P., Parthiban, A., Muthukumaran, J., Jain, M., Misra, R., Mageswaran, T., Sridhar, R., Ramachandran, P., & Ramachandran, R. (2021). A comprehensive in silico and in vitro studies on quinizarin: a promising phytochemical derived from Rhizophora mucronata Lam. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1894983
  • Sachithanandam, V., Parthiban, A., Lalitha, P., Muthukumaran, J., Jain, M., Elumalai, D., Jayabal, K., Sridhar, R., Ramachandran, P., & Ramachandran, R. (2020). Biological evaluation of gallic acid and quercetin derived from Ceriops tagal: insights from extensive in vitro and in silico studies. Journal of Biomolecular Structure and Dynamics, 2020, 1–13.
  • Sachithanandam, V., Lalitha, P., Parthiban, A., Mageswaran, T., Manmadhan, K., & Sridhar, R. (2019). A Review on antidiabetic properties of Indian mangrove plants with reference to Island ecosystem. Evidence-Based Complementary and Alternative Medicine, 2019, 1–21. https://doi.org/10.1155/2019/4305148
  • Sharma, V., & Janmeda, P. (2017). Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arabian Journal of Chemistry, 10(4), 509–514. https://doi.org/10.1016/j.arabjc.2014.08.019
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Thatoi, H., Samantaray, D., & Das, S. K. (2016). The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: a review. Frontiers in Life Science, 9(4), 267–291. https://doi.org/10.1080/21553769.2016.1235619
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wu, J., Xiao, Q., Xu, J., Li, M.Y., Pan, J.Y., & Yang, M.H., (2008). Natural products from true mangrove flora: source, chemistry and bioactivities. Natural Product Reports, 25, 955–981.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Yazdiniapour, Z., Yegdaneh, A., & Akbari, S. (2021). Isolation and characterization of methylated flavones from Artemisia kermanensis. Advanced Biomedical Research, 10, 23.
  • Zheng, C. J., Yoo, J. S., Lee, T. G., Cho, H. Y., Kim, Y. H., & Kim, W. G. (2005). Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579(23), 5157–5162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.