204
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Luminescence studies of binding affinity of vildagliptin with bovine serum albumin

, , , , , , , & show all
Pages 3002-3013 | Received 08 Jan 2022, Accepted 14 Feb 2022, Published online: 26 Feb 2022

References

  • Abdullah, S. M. S., Fatma, S., Rabbani, G., & Ashraf, J. M. (2017). A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin. Journal of Molecular Structure, 1127, 283–288. https://doi.org/10.1016/j.molstruc.2016.07.108
  • Abou-Zied, O. K., & Al-Shihi, O. I. K. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793–10801. https://doi.org/10.1021/ja8031289
  • Aguilera-Garrido, A., del Castillo-Santaella, T., Yang, Y., Galisteo-González, F., Gálvez-Ruiz, M. J., Molina-Bolívar, J. A., Holgado-Terriza, J. A., Cabrerizo-Vílchez, M. Á., & Maldonado-Valderrama, J. (2021). Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Advances in Colloid and Interface Science, 290, 102365. https://doi.org/10.1016/j.cis.2021.102365
  • Ahmad, E., Rabbani, G., Zaidi, N., Singh, S., Rehan, M., Khan, M. M., Rahman, S. K., Quadri, Z., Shadab, M., Ashraf, M. T., Subbarao, N., Bhat, R., & Khan, R. H. (2011). Stereo-selectivity of human serum albumin to enantiomeric and isoelectronic pollutants dissected by spectroscopy, calorimetry and bioinformatics. Plos One, 6(11), e26186. https://doi.org/10.1371/journal.pone.0026186
  • Aki, H., & Yamamoto, M. (1989). Thermodynamics of the binding of phenothiazines to human plasma, human serum albumin and alpha 1-acid glycoprotein: A calorimetric study. The Journal of Pharmacy and Pharmacology, 41(10), 674–679. https://doi.org/10.1111/j.2042-7158.1989.tb06339.x
  • Ariga, G. G., Naik, P. N., Chimatadar, S. A., & Nandibewoor, S. T. (2017). Interactions between epinastine and human serum albumin: Investigation by fluorescence, UV–vis, FT–IR, CD, lifetime measurement and molecular docking. Journal of Molecular Structure., 1137, 485–494. https://doi.org/10.1016/j.molstruc.2016.12.066
  • Chakraborty, G., Ray, A. K., Singh, P. K., & Pal, H. (2019). Non-covalent interaction of BODIPY-benzimidazole conjugate with bovine serum albumin–A photophysical and molecular docking study. Journal of Photochemistry and Photobiology A: Chemistry, 377, 220–227. https://doi.org/10.1016/j.jphotochem.2019.04.001
  • Davis, H., Jones Briscoe, V., Dumbadze, S., & Davis, S. N. (2019). Using DPP-4 inhibitors to modulate beta cell function in type 1 diabetes and in the treatment of diabetic kidney disease. Expert Opinion on Investigational Drugs, 28(4), 377–388. https://doi.org/10.1080/13543784.2019.1592156
  • Ebrashy, I. E., Kafrawy, N. E., Raouf, R., & Yousry, D. (2020). Effectiveness, safety, and tolerability of vildagliptin or vildagliptin/metformin combination in patients with type 2 diabetes uncontrolled on insulin therapy in a real-world setting in Egypt: The OMEGA study. Diabetes Research and Clinical Practice, 162, 108042. https://doi.org/10.1016/j.diabres.2020.108042
  • Foley, J. E., & Jordan, J. (2010). Weight neutrality with the DPP-4 inhibitor, vildagliptin: Mechanistic basis and clinical experience. Vascular Health and Risk Management, 6, 541–548. https://doi.org/10.2147/vhrm.s10952
  • Gu, J., Liu, L., Zheng, S., Yang, G., He, Q., Huang, X., & Guo, C. (2020). Investigation of the binding interactions between 17α-ethinylestradiol with bovine serum albumin by multispectroscopy. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 55(9), 1131–1140. https://doi.org/10.1080/10934529.2020.1776035
  • Gu, J., Zhao, H., Liu, L., Yang, D., Chen, H., & Sun, T. (2020). Investigation of the binding interactions between dimethyl phthalate and its metabolite with bovine serum albumin by multispectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy , 228, 117771. https://doi.org/10.1016/j.saa.2019.117771
  • He, Y. L. (2012). Clinical pharmacokinetics and pharmacodynamics of vildagliptin. Clinical Pharmacokinetics., 51, 147–162. https://doi.org/10.2165/11598080-000000000-00000
  • Lakowicz, J. R. (1983). Protein Fluorescence. In Princ. Fluoresc. Spectrosc. (pp. 341–381). Springer. https://doi.org/10.1007/978-1-4615-7658-7_11
  • Jahanban-Esfahlan, A., Dastmalchi, S., & Davaran, S. (2016). A simple improved desolvation method for the rapid preparation of albumin nanoparticles. International Journal of Biological Macromolecules, 91, 703–709. https://doi.org/10.1016/j.ijbiomac.2016.05.032
  • Jahanban-Esfahlan, A., Ostadrahimi, A., Jahanban-Esfahlan, R., Roufegarinejad, L., Tabibiazar, M., & Amarowicz, R. (2019). Recent developments in the detection of bovine serum albumin. International Journal of Biological Macromolecules , 138, 602–617. https://doi.org/10.1016/j.ijbiomac.2019.07.096
  • Jahanban-Esfahlan, A., Panahi-Azar, V., & Sajedi, S. (2015). Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin. Biopolymers, 103(11), 638–645. https://doi.org/10.1002/bip.22697
  • Jahanban-Esfahlan, A., Panahi-Azar, V., & Sajedi, S. (2016). Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chem, 202, 426–431. https://doi.org/10.1016/j.foodchem.2016.02.026
  • Jahanban-Esfahlan, A., Roufegarinejad, L., Jahanban-Esfahlan, R., Tabibiazar, M., & Amarowicz, R. (2020). Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 207, 120317. https://doi.org/10.1016/j.talanta.2019.120317
  • Kamaljeet, S., Bansal, U. & Sen Gupta, (2017). A study of the interaction of bovine hemoglobin with synthetic dyes using spectroscopic techniques and molecular docking. Frontiers in Chemistry, 5, 1-8. https://doi.org/10.3389/fchem.2016.00050
  • Khakpour, S., Wilhelmsen, K., & Hellman, J. (2015). Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immunity, 21(8), 827–846. https://doi.org/10.1177/1753425915606525
  • Kothny, W., Foley, J., Kozlovski, P., Shao, Q., Gallwitz, B., & Lukashevich, V. (2013). Improved glycaemic control with vildagliptin added to insulin, with or without metformin, in patients with type 2 diabetes mellitus. Diabetes, Obesity & Metabolism, 15(3), 252–257. https://doi.org/10.1111/dom.12020
  • Lei, Y., Hu, L., Yang, G., Piao, L., Jin, M., & Cheng, X. W. (2017). Dipeptidyl peptidase-IV inhibition for the treatment of cardiovascular disease – Recent insights focusing on angiogenesis and neovascularization. Circulation Journal: Official Journal of the Japanese Circulation Society, 81(6), 770–776. https://doi.org/10.1253/circj.CJ-16-1326
  • Li, C., Huang, T., Fu, Y., Liu, Y., Zhou, S., Qi, Z., & Li, C. (2016). Interaction of di-2-pyridylketone 2-pyridine carboxylic acid hydrazone and its copper complex with BSA: Effect on antitumor activity as revealed by spectroscopic studies. Molecules, 21(5), 563. https://doi.org/10.3390/molecules21050563
  • Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 1-9. https://doi.org/10.1038/sigtrans.2017.23.
  • Makarska-Bialokoz, M., & Lipke, A. (2019). Study of the binding interactions between uric acid and bovine serum albumin using multiple spectroscopic techniques. Journal of Molecular Liquids., 276, 595–604. https://doi.org/10.1016/j.molliq.2018.12.026
  • Maleki, S., Dehghan, G., Sadeghi, L., Rashtbari, S., Iranshahi, M., & Sheibani, N. (2020). Surface plasmon resonance, fluorescence, and molecular docking studies of bovine serum albumin interactions with natural coumarin diversin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 230, 118063. https://doi.org/10.1016/j.saa.2020.118063
  • Ojha, H., Mishra, K., Hassan, M. I., & Chaudhury, N. K. (2012). Spectroscopic and isothermal titration calorimetry studies of binding interaction of ferulic acid with bovine serum albumin. Thermochimica Acta, 548, 56–64. https://doi.org/10.1016/j.tca.2012.08.016
  • Patel, R., Maurya, N., Ud Din Parray, M., Farooq, N., Siddique, A., Verma, K. L., & Dohare, N. (2018). Esterase activity and conformational changes of bovine serum albumin toward interaction with mephedrone: Spectroscopic and computational studies. Journal of Molecular Recognition., 31, 1–13. https://doi.org/10.1002/jmr.2734
  • Pathak, M., Mishra, R., Agarwala, P. K., Ojha, H., Singh, B., Singh, A., & Kukreti, S. (2016). Binding of ethyl pyruvate to bovine serum albumin: Calorimetric, spectroscopic and molecular docking studies. Thermochimica Acta, 633, 140–148. https://doi.org/10.1016/j.tca.2016.04.006
  • Rabbani, G., & Ahn, S. N. (2019). Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. International Journal of Biological Macromolecules, 123, 979–990. https://doi.org/10.1016/j.ijbiomac.2018.11.053
  • Rabbani, G., & Ahn, S. N. (2021). Review: Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. International Journal of Biological Macromolecules, 193(Pt A), 948–955. https://doi.org/10.1016/j.ijbiomac.2021.10.095
  • Rabbani, G., Ahmad, E., Khan, M. V., Ashraf, M. T., Bhat, R., & Khan, R. H. (2015). Impact of structural stability of cold adapted Candida antarctica lipase B (CaLB): In relation to pH, chemical and thermal denaturation. RSC Advances, 5(26), 20115–20131. https://doi.org/10.1039/C4RA17093H
  • Rabbani, G., Ahmad, E., Zaidi, N., & Khan, R. H. (2011). pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochemistry and Biophysics, 61(3), 551–560. https://doi.org/10.1007/s12013-011-9237-x
  • Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., & Khan, R. H. (2012). pH-Induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochemistry and Biophysics, 62(3), 487–499. https://doi.org/10.1007/s12013-011-9335-9
  • Rabbani, G., Baig, M. H., Jan, A. T., Ju Lee, E., Khan, M. V., Zaman, M., Farouk, A. E. A., Khan, R. H., & Choi, I. (2017). Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International Journal of Biological Macromolecules, 105(Pt 3), 1572–1580. https://doi.org/10.1016/j.ijbiomac.2017.04.051
  • Rabbani, G., Baig, M. H., Lee, E. J., Cho, W. K., Ma, J. Y., & Choi, I. (2017). Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analyses. Molecular Pharmaceutics, 14(5), 1656–1665. https://doi.org/10.1021/acs.molpharmaceut.6b01124
  • Rabbani, G., Kaur, J., Ahmad, E., Khan, R. H., & Jain, S. K. (2014). Structural characteristics of thermostable immunogenic outer membrane protein from Salmonella enterica serovar Typhi. Applied Microbiology and Biotechnology, 98(6), 2533–2543. https://doi.org/10.1007/s00253-013-5123-3
  • Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics , 15(4), 1445–1456. https://doi.org/10.1021/acs.molpharmaceut.7b00976
  • Rahman, A. J., Kaur, L., Pathak, M., Singh, A., Verma, P., Singhal, R., Kumar, V., & Ojha, H. (2021). Spectroscopic studies of binding interactions of 2-chloroethylphenyl sulphide with bovine serum albumin. Journal of Molecular Liquids., 340, 117144. https://doi.org/10.1016/j.molliq.2021.117144
  • Roufegarinejad, L., Amarowicz, R., & Jahanban-Esfahlan, A. (2019). Characterizing the interaction between pyrogallol and human serum albumin by spectroscopic and molecular docking methods. Journal of Biomolecular Structure & Dynamics, 37(11), 2766–2775. https://doi.org/10.1080/07391102.2018.1496854
  • Roufegarinejad, L., Jahanban-Esfahlan, A., Sajed-Amin, S., Panahi-Azar, V., & Tabibiazar, M. (2018). Molecular interactions of thymol with bovine serum albumin: Spectroscopic and molecular docking studies. Journal of Molecular Recognition, 31, 1-6. https://doi.org/10.1002/JMR.2704
  • S. KhatunRiyazuddeen. (2018). Interaction of colchicine with BSA: Spectroscopic, calorimetric and molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 36, 3122–3129. https://doi.org/10.1080/07391102.2017.1384397
  • Safarnejad, A., Shaghaghi, M., Dehghan, G., & Soltani, S. (2016). Binding of carvedilol to serum albumins investigated by multi-spectroscopic and molecular modeling methods. Journal of Luminescense., 176, 149–158. https://doi.org/10.1016/j.jlumin.2016.02.001
  • Schlamadinger, D. E., Kats, D. I., Kim, J. E., & Jolla, L. (2010). Quenching of tryptophan fluorescence in unfolded physical chemistry students. Journal of Chemical Education, 87(9), 961–964. 10. https://doi.org/10.1021/ed900029c
  • Shaghaghi, M., Dehghan, G., Rashtbari, S., Sheibani, N., & Aghamohammadi, A. (2019). Multispectral and computational probing of the interactions between sitagliptin and serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 223, 117286. https://doi.org/10.1016/j.saa.2019.117286
  • Shaikh, S. M. T., Seetharamappa, J., Ashoka, S., & Kandagal, P. B. (2007). A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods. Dyes and Pigments, 73(2), 211–216. https://doi.org/10.1016/j.dyepig.2005.11.008
  • Sharma, D., Ojha, H., Pathak, M., Singh, B., Sharma, N., Singh, A., Kakkar, R., & Sharma, R. K. (2016). Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin. Journal of Molecular Structure., 1118, 267–274. https://doi.org/10.1016/j.molstruc.2016.04.030
  • Shen, Y., Zhu, C., Wang, Y., Xu, J., Xue, R., Ji, F., Wu, Y., Wu, Z., Zhang, W., Zheng, Z., & Ye, Y. (2020). Evaluation the binding of chelerythrine, a potentially harmful toxin, with bovine serum albumin. Food and Chemical Toxicology, 135, 110933. https://doi.org/10.1016/j.fct.2019.110933
  • Singh, S. K., & Kishore, N. (2006). Thermodynamic insights into the binding of triton X-100 to globular proteins: A calorimetric and spectroscopic investigation. The Journal of Physical Chemistry. B, 110(19), 9728–9737. https://doi.org/10.1021/jp0608426
  • Skopińska-Różewska, E., Chorostowska-Wynimko, J., Rogala, E., Radomska-Leśniewska, D., Skopiński, P., Sommer, E., & Siwicki, A. K. (2004). Caffeic acid feeding of pregnant and lactating mice influences the immune response of their progeny. Polish Journal of Food and Nutrition Sciences, 54, 63–66.
  • Sreerama, N., & Woody, R. W. (2004). Computation and analysis of protein circular dichroism spectra. Methods in Enzymology, 383, 318–351. https://doi.org/10.1016/S0076-6879(04)83013-1.
  • Sun, Q., He, J., Yang, H., Li, S., Zhao, L., & Li, H. (2017). Analysis of binding properties and interaction of thiabendazole and its metabolite with human serum albumin via multiple spectroscopic methods. Food Chemistry, 233, 190–196. https://doi.org/10.1016/j.foodchem.2017.04.119
  • Tabassum, S., Al-Asbahy, W. M., Afzal, M., & Arjmand, F. (2012). Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): Spectroscopic and molecular docking investigations. Journal of Photochemistry and Photobiology. B, Biology, 114, 132–139. https://doi.org/10.1016/j.jphotobiol.2012.05.021
  • Tayyab, S., & Feroz, S. R. (2021). Serum albumin: Clinical significance of drug binding and development as drug delivery vehicle. Elsevier Ltd. https://doi.org/10.1016/bs.apcsb.2020.08.003.
  • Varlan, A., & Hillebrand, M. (2010). Bovine and human serum albumin interactions with 3-carboxyphenoxathiin studied by fluorescence and circular dichroism spectroscopy. Molecules (Basel, Switzerland), 15(6), 3905–3919. https://doi.org/10.3390/molecules15063905
  • Varshney, A., Rehan, M., Subbarao, N., Rabbani, G., & Khan, R. H. (2011). Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: Site specific uremic toxicity & impaired drug binding. PLoS One, 6(2), e17230. https://doi.org/10.1371/journal.pone.0017230
  • Watanabe, H., Tanase, S., Nakajou, K., Maruyama, T., Kragh-Hansen, U., & Otagiri, M. (2000). Role of Arg-410 and Tyr-411 in human serum albumin for ligand binding and esterase-like activity. Biochemical Journal, 349(3), 813–819. https://doi.org/10.1042/bj3490813
  • Wiciński, M., Górski, K., Wódkiewicz, E., Walczak, M., Nowaczewska, M., & Malinowski, B. (2020). Vasculoprotective effects of vildagliptin. Focus on atherogenesis. International Journal of Molecular Sciences, 21(7), 227517. https://doi.org/10.3390/ijms21072275
  • World Health Organization Diabetes. ( n.d.). https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed September 11, 2021).
  • Zhang, M., Jin, X., Zhang, Z., Li, B., & Yang, G. (2018). Vildagliptin protects endothelial cells against high glucose-induced damage. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 108, 1790–1796. https://doi.org/10.1016/j.biopha.2018.09.148

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.