496
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In the footsteps of an inhibitor unbinding from the active site of human carbonic anhydrase II

ORCID Icon & ORCID Icon
Pages 3187-3204 | Received 18 Oct 2021, Accepted 19 Feb 2022, Published online: 08 Mar 2022

References

  • Acharya, A., Agarwal, R., Baker, M. B., Baudry, J., Bhowmik, D., Boehm, S., Byler, K. G., Chen, S. Y., Coates, L., Cooper, C. J., Demerdash, O., Daidone, I., Eblen, J. D., Ellingson, S., Forli, S., Glaser, J., Gumbart, J. C., Gunnels, J., Hernandez, O., … Zanetti-Polzi, L. (2020). Supercomputer-based ensemble docking drug discovery pipeline with application to covid-19. Journal of Chemical Information and Modeling, 60(12), 5832–5852. https://doi.org/10.1021/acs.jcim.0c01010
  • Alaei, L., Khodarahmi, R., Sheikh-Hasani, V., Sheibani, N., & Moosavi-Movahedi, A. A. (2018). Mechanistic investigation of sulfonamide ligands as human carbonic anhydrase II inhibitors. International Journal of Biological Macromolecules, 120(Pt A), 1198–1207.
  • Alterio, V., Di Fiore, A., D’Ambrosio, K., Supuran, C. T., & De Simone, G. (2012). Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chemical Reviews, 112(8), 4421–4468.
  • Al-Warhi, T., Sabt, A., Elkaeed, E. B., & Eldehna, W. M. (2020). Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorganic Chemistry, 103, 104163.
  • Angeli, A., Carta, F., Nocentini, A., Winum, J.-Y., Zalubovskis, R., Akdemir, A., Onnis, V., Eldehna, W. M., Capasso, C., Simone, G. D., Monti, S. M., Carradori, S., Donald, W. A., Dedhar, S., & Supuran, C. T. (2020). Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites, 10(10), 412. https://doi.org/10.3390/metabo10100412
  • Appel, E. A., Biedermann, F., Hoogland, D., Del Barrio, J., Driscoll, M. D., Hay, S., Wales, D. J., & Scherman, O. A. (2017). Decoupled associative and dissociative processes in strong yet highly dynamic host-guest complexes. Journal of the American Chemical Society, 139(37), 12985–12993. https://doi.org/10.1021/jacs.7b04821
  • Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A., & Parrinello, M. (2009). Plumed: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications, 180(10), 1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011
  • Carta, F., Maresca, A., Scozzafava, A., & Supuran, C. T. (2012). Novel coumarins and 2-thioxo-coumarins as inhibitors of the tumor-associated carbonic anhydrases IX and XII. Bioorganic & Medicinal Chemistry, 20(7), 2266–2273. https://doi.org/10.1016/j.bmc.2012.02.014
  • Case, D., Babin, V., Berryman, J., Betz, R., Cai, Q., Cerutti, D., Cheatham, T., Darden, T., Duke, R. E., Gohlke, H., Götz, A. W., Gusarov, S., Homeyer, N., Janowski, P. A., Kaus, J., Kolossváry, I., Kovalenko, A., Lee, T.-S., Legrand, S., Luchko, T., … Kollman, P. (2014). Amber 14. University of California.
  • Chahal, V., Nirwan, S., & Kakkar, R. (2020). A comparative study of the binding modes of SLC-0111 and its analogues in the hCA II and hCA IX active sites using QM/MM, molecular docking, MM-GBSA and MD approaches. Biophysical Chemistry, 265, 106439. https://doi.org/10.1016/j.bpc.2020.106439
  • Chahal, V., Nirwan, S., Pathak, M., & Kakkar, R. (2020). Identification of potent human carbonic anhydrase IX inhibitors: A combination of pharmacophore modeling, 3D-QSAR, virtual screening and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 265, 1–16. https://doi.org/10.1080/07391102.2020.1860132
  • Chen, G., Kong, X., Lu, D., Wu, J., & Liu, Z. (2017). Kinetics of CO2 diffusion in human carbonic anhydrase: A study using molecular dynamics simulations and the Markov-state model. Physical Chemistry Chemical Physics, 19(18), 11690–11697. https://doi.org/10.1039/C7CP00887B
  • Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., Sustr, V., Klvana, M., Medek, P., Biedermannova, L., Sochor, J., & Damborsky, J. (2012). Caver 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Computational Biology, 8(10), e1002708. https://doi.org/10.1371/journal.pcbi.1002708
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh ewald: An n·log(n) method for ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092.
  • Ferraroni, M., Carta, F., Scozzafava, A., & Supuran, C. T. (2016). Thioxocoumarins show an alternative carbonic anhydrase inhibition mechanism compared to coumarins. Journal of Medicinal Chemistry, 59(1), 462–473.
  • Fisher, S. Z., Maupin, C. M., Budayova-Spano, M., Govindasamy, L., Tu, C., Agbandje-McKenna, M., Silverman, D. N., Voth, G. A., & McKenna, R. (2007). Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: Insights into the proton transfer mechanism. Biochemistry, 46(11), 2930–2937. https://doi.org/10.1021/bi062066y
  • Fox, J. M., Kang, K., Sastry, M., Sherman, W., Sankaran, B., Zwart, P. H., & Whitesides, G. M. (2017). Water-restructuring mutations can reverse the thermodynamic signature of ligand binding to human carbonic anhydrase. Angewandte Chemie (International ed. in English), 56(14), 3833–3837. https://doi.org/10.1002/anie.201609409
  • Frishman, D., & Argos, P. (1995). Knowledge-based protein secondary structure assignment. Proteins: Structure, Function, and Genetics, 23(4), 566–579. https://doi.org/10.1002/prot.340230412
  • Galati, S., Yonchev, D., Rodríguez-Pérez, R., Vogt, M., Tuccinardi, T., & Bajorath, J. (2021). Predicting isoform-selective carbonic anhydrase inhibitors via machine learning and rationalizing structural features important for selectivity. ACS Omega, 6(5), 4080–4089.
  • Gaspari, R., Rechlin, C., Heine, A., Bottegoni, G., Rocchia, W., Schwarz, D., Bomke, J., Gerber, H.-D., Klebe, G., & Cavalli, A. (2016). Kinetic and structural insights into the mechanism of binding of sulfonamides to human carbonic anhydrase by computational and experimental studies. Journal of Medicinal Chemistry, 59(9), 4245–4256. https://doi.org/10.1021/acs.jmedchem.5b01643
  • Glöckner, S., Heine, A., & Klebe, G. (2020). A proof-of-concept fragment screening of a hit-validated 96-compounds library against human carbonic anhydrase II. Biomolecules, 10(4), 518. https://doi.org/10.3390/biom10040518
  • Häkansson, K., Carlsson, M., Svensson, L., & Liljas, A. (1992). Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. Journal of Molecular Biology, 227(4), 1192–1204.
  • Her, Y., Kil, M. S., Park, J. H., Kim, C. W., & Kim, S. S. (2011). Stevens–Johnson syndrome induced by acetazolamide. The Journal of Dermatology, 38(3), 272–275.
  • Hüfner-Wulsdorf, T., & Klebe, G. (2020). Role of water molecules in protein-ligand dissociation and selectivity discrimination: Analysis of the mechanisms and kinetics of biomolecular solvation using molecular dynamics. Journal of Chemical Information and Modeling, 60(3), 1818–1832. https://doi.org/10.1021/acs.jcim.0c00156
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • Idrees, D., Hadianawala, M., Mahapatra, A. D., Datta, B., Roy, S., Ahamad, S., Khan, P., & Imtaiyaz Hassan, M. (2018). Implication of sulfonylurea derivatives as prospective inhibitors of human carbonic anhydrase II. International Journal of Biological Macromolecules, 115, 961–969. https://doi.org/10.1016/j.ijbiomac.2018.04.131
  • Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., & Schulten, K. (1999). Steered molecular dynamics. Springer.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kovalevsky, A., Aggarwal, M., Velazquez, H., Cuneo, M. J., Blakeley, M. P., Weiss, K. L., Smith, J. C., Fisher, S. Z., & McKenna, R. (2018). "To be or not to be" protonated: Atomic details of human carbonic anhydrase-clinical drug complexes by neutron crystallography and simulation. Structure, 26(3), 383–390. https://doi.org/10.1016/j.str.2018.01.006
  • Kräutler, V., Gunsteren, W. F. v., & Hünenberger, P. H. (2001). A fast shake algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508.
  • Kumar, A., Agarwal, P., Rathi, E., & Kini, S. G. (2020). Computer-aided identification of human carbonic anhydrase isoenzyme VII inhibitors as potential antiepileptic agents. Journal of Biomolecular Structure and Dynamics, 1–16.
  • Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011–1021. https://doi.org/10.1002/jcc.540130812
  • Kumar, S., Rulhania, S., Jaswal, S., & Monga, V. (2021). Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. European Journal of Medicinal Chemistry, 209, 112923.
  • Kurt, B. Z., Dag, A., Doğan, B., Durdagi, S., Angeli, A., Nocentini, A., Supuran, C. T., & Sonmez, F. (2019). Synthesis, biological activity and multiscale molecular modeling studies of bis-coumarins as selective carbonic anhydrase IX and XII inhibitors with effective cytotoxicity against hepatocellular carcinoma. Bioorganic Chemistry, 87, 838–850. https://doi.org/10.1016/j.bioorg.2019.03.003
  • Linkuvienė, V., Talibov, V. O., Danielson, U. H., & Matulis, D. (2018). Introduction of intrinsic kinetics of protein-ligand interactions and their implications for drug design. Journal of Medicinal Chemistry, 61(6), 2292–2302.
  • Linkuvienė, V., Zubrienė, A., Manakova, E., Petrauskas, V., Baranauskienė, L., Zakšauskas, A., Smirnov, A., Gražulis, S., Ladbury, J. E., & Matulis, D. (2018). Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Quarterly Reviews of Biophysics, 51, e10. https://doi.org/10.1017/S0033583518000082
  • Loncharich, R. J., Brooks, B. R., & Pastor, R. W. (1992). Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide. Biopolymers, 32(5), 523–535. https://doi.org/10.1002/bip.360320508
  • Luchinat, E., Barbieri, L., Cremonini, M., Nocentini, A., Supuran, C. T., & Banci, L. (2020). Intracellular binding/unbinding kinetics of approved drugs to carbonic anhydrase II observed by in-cell NMR. ACS Chemical Biology, 15(10), 2792–2800.
  • Ma, H., Li, A., & Gao, K. (2017). Network of conformational transitions revealed by molecular dynamics simulations of the carbonic anhydrase II apo-enzyme. ACS Omega, 2(11), 8414–8420.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713.
  • Mancuso, F., De Luca, L., Angeli, A., Berrino, E., Del Prete, S., Capasso, C., Supuran, C. T., & Gitto, R. (2020). In silico-guided identification of new potent inhibitors of carbonic anhydrases expressed in vibrio cholerae. ACS Medicinal Chemistry Letters, 11(11), 2294–2299. https://doi.org/10.1021/acsmedchemlett.0c00417
  • Maresca, A., Temperini, C., Pochet, L., Masereel, B., Scozzafava, A., & Supuran, C. T. (2010). Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. Journal of Medicinal Chemistry, 53(1), 335–344.
  • Matulis, D. (2019). Carbonic anhydrase as drug target: Thermodynamics and Structure of inhibitor binding. Springer International Publishing.
  • Maupin, C. M., & Voth, G. A. (2010). Proton transport in carbonic anhydrase: Insights from molecular simulation. Biochimica et Biophysica Acta, 1804(2), 332–341. https://doi.org/10.1016/j.bbapap.2009.09.006
  • Meleddu, R., Deplano, S., Maccioni, E., Ortuso, F., Cottiglia, F., Secci, D., Onali, A., Sanna, E., Angeli, A., Angius, R., Alcaro, S., Supuran, C. T., & Distinto, S. (2021). Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 685–692. https://doi.org/10.1080/14756366.2021.1887171
  • Melis, C., Distinto, S., Bianco, G., Meleddu, R., Cottiglia, F., Fois, B., Taverna, D., Angius, R., Alcaro, S., Ortuso, F., Gaspari, M., Angeli, A., Del Prete, S., Capasso, C., Supuran, C. T., & Maccioni, E. (2018). Targeting tumor associated carbonic anhydrases IX and XII: Highly isozyme selective coumarin and psoralen inhibitors. ACS Medicinal Chemistry Letters, 9(7), 725–729. https://doi.org/10.1021/acsmedchemlett.8b00170
  • Mishra, C. B., Tiwari, M., & Supuran, C. T. (2020). Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Medicinal Research Reviews, 40(6), 2485–2565.
  • Murray, A. B., Lomelino, C. L., Supuran, C. T., & McKenna, R. (2018). “Seriously sweet”: Acesulfame K exhibits selective inhibition using alternative binding modes in carbonic anhydrase isoforms. Journal of Medicinal Chemistry, 61(3), 1176–1181.
  • Mushtaque, M., Avecilla, F., Ahmad, I., Alharbi, A. M., Khan, P., Ahamad, S., & Hassan, M. I. (2021). 5-Fluorouracil (5-FU)-based Aza-Michael addition product: A selective carbonic anhydrase IX inhibitor. Journal of Molecular Structure, 1231, 129977. https://doi.org/10.1016/j.molstruc.2021.129977
  • Neophytou, C. M., Panagi, M., Stylianopoulos, T., & Papageorgis, P. (2021). The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers, 13(9), 2053. https://doi.org/10.3390/cancers13092053
  • Nocentini, A., Angeli, A., Carta, F., Winum, J.-Y., Zalubovskis, R., Carradori, S., Capasso, C., Donald, W. A., & Supuran, C. T. (2021). Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 561–580. https://doi.org/10.1080/14756366.2021.1882453
  • Nocentini, A., & Supuran, C. T. (2019). Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opinion on Drug Discovery, 14(11), 1175–1197.
  • Palermo, G., Spinello, A., Saha, A., & Magistrato, A. (2021). Frontiers of metal-coordinating drug design. Expert Opinion on Drug Discovery, 16(5), 497–511.
  • Paul, S., Paul, T. K., & Taraphder, S. (2018). Reaction coordinate, free energy, and rate of intramolecular proton transfer in human carbonic anhydrase II. The Journal of Physical Chemistry. B, 122(11), 2851–2866.
  • Paul, T. K., & Taraphder, S. (2020). Coordination dynamics of zinc triggers the rate determining proton transfer in human carbonic anhydrase II. Chemphyschem, 21(13), 1455–1473.
  • Peters, M. B., Yang, Y., Wang, B., Füsti-Molnár, L., Weaver, M. N., & Merz, K. M. (2010). Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). Journal of Chemical Theory and Computation, 6(9), 2935–2947.
  • PLUMED Consortium. (2019). Promoting transparency and reproducibility in enhanced molecular simulations. Nature Methods, 16(8), 670–673.
  • Pustenko, A., Nocentini, A., Gratteri, P., Bonardi, A., Vozny, I., Žalubovskis, R., & Supuran, C. T. (2020). The antibiotic furagin and its derivatives are isoform-selective human carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1011–1020. https://doi.org/10.1080/14756366.2020.1752201
  • Roy, A., & Taraphder, S. (2007). Identification of proton-transfer pathways in human carbonic anhydrase II. The Journal of Physical Chemistry. B, 111(35), 10563–10576. https://doi.org/10.1021/jp073499t
  • Roy, A., & Taraphder, S. (2009). Transition path sampling study of the conformational fluctuation of His-64 in human carbonic anhydrase II. The Journal of Physical Chemistry. B, 113(37), 12555–12564. https://doi.org/10.1021/jp9010982
  • Schuetz, D. A., de Witte, W. E. A., Wong, Y. C., Knasmueller, B., Richter, L., Kokh, D. B., Sadiq, S. K., Bosma, R., Nederpelt, I., Heitman, L. H., Segala, E., Amaral, M., Guo, D., Andres, D., Georgi, V., Stoddart, L. A., Hill, S., Cooke, R. M., De Graaf, C., … Ecker, G. F. (2017). Kinetics for drug discovery: An industry-driven effort to target drug residence time. Drug Discovery Today, 22(6), 896–911. https://doi.org/10.1016/j.drudis.2017.02.002
  • Simone, G. D., Alterio, V., & Supuran, C. T. (2013). Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. Expert Opinion on Drug Discovery, 8(7), 793–810.
  • Spiro, T. G. (1983). Zinc enzymes. Wiley.
  • Supuran, C., & Nocentini, A. (2019). Carbonic anhydrases: Biochemistry and pharmacology of an evergreen pharmaceutical target. Elsevier Science.
  • Supuran, C., Scozzafava, A., & Conway, J. (2004). Carbonic anhydrase: Its inhibitors and activators. CRC Press.
  • Supuran, C. T. (2008). Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nature Reviews. Drug Discovery, 7(2), 168–181. https://doi.org/10.1038/nrd2467
  • Supuran, C. T. (2016). How many carbonic anhydrase inhibition mechanisms exist? Journal of Enzyme Inhibition and Medicinal Chemistry, 31(3), 345–360. https://doi.org/10.3109/14756366.2015.1122001
  • Supuran, C. T. (2017). Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opinion on Drug Discovery, 12(1), 61–88. https://doi.org/10.1080/17460441.2017.1253677
  • Supuran, C. T. (2018). Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opinion on Therapeutic Patents, 28(10), 709–712. https://doi.org/10.1080/13543776.2018.1523897
  • Supuran, C. T. (2020). Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opinion on Drug Discovery, 15(6), 671–686. https://doi.org/10.1080/17460441.2020.1743676
  • Supuran, C. T., & Capasso, C. (2014). Targeting carbonic anhydrases. Future Science Ltd.
  • Taraphder, S., & Hummer, G. (2003). Protein side-chain motion and hydration in proton-transfer pathways. Results for cytochrome p450cam. Journal of the American Chemical Society, 125(13), 3931–3940.
  • Taraphder, S., Maupin, C. M., Swanson, J. M. J., & Voth, G. A. (2016). Coupling protein dynamics with proton transport in human carbonic anhydrase ii. The Journal of Physical Chemistry. B, 120(33), 8389–8404.
  • Tinivella, A., Pinzi, L., & Rastelli, G. (2021). Prediction of activity and selectivity profiles of human carbonic anhydrase inhibitors using machine learning classification models. Journal of Cheminformatics, 13(1), 18.
  • Torrie, G., & Valleau, J. (1977). Nonphysical sampling distributions in monte carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics, 23(2), 187–199. https://doi.org/10.1016/0021-9991(77)90121-8
  • Touisni, N., Maresca, A., McDonald, P. C., Lou, Y., Scozzafava, A., Dedhar, S., Winum, J.-Y., & Supuran, C. T. (2011). Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. Journal of Medicinal Chemistry, 54(24), 8271–8277. https://doi.org/10.1021/jm200983e
  • Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., & Bussi, G. (2014). Plumed 2: New feathers for an old bird. Computer Physics Communications, 185(2), 604–613. https://doi.org/10.1016/j.cpc.2013.09.018
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wambo, T. O., Chen, L. Y., McHardy, S. F., & Tsin, A. T. (2016). Molecular dynamics study of human carbonic anhydrase II in complex with Zn(2+) and acetazolamide on the basis of all-atom force field simulations. Biophysical Chemistry, 214-215, 54–60. https://doi.org/10.1016/j.bpc.2016.05.006
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computational Chemistry, 25(9), 1157–1174.
  • Wang, Y., Guo, H., Tang, G., He, Q., Zhang, Y., Hu, Y., Wang, Y., & Lin, Z. (2019). A selectivity study of benzenesulfonamide derivatives on human carbonic anhydrase II/IX by 3D-QSAR, molecular docking and molecular dynamics simulation. Computational Biology and Chemistry, 80, 234–243. https://doi.org/10.1016/j.compbiolchem.2019.03.005
  • Wu, Y., Xu, J., Liu, Y., Zeng, Y., & Wu, G. (2020). A review on anti-tumor mechanisms of coumarins. Frontiers in Oncology, 10, 2720. https://doi.org/10.3389/fonc.2020.592853
  • Yadav, P. R., Basha, S. H., Satyanarayana, S. D. V., & Pindi, P. K. (2021). Microsecond simulation analysis of carbonic anhydrase-II in complex with (+)-cathechin revealed molecular interactions responsible for its amelioration effect on fluoride toxicity. Journal of Biomolecular Structure and Dynamics, 1–14.
  • Yamali, C., Sakagami, H., Uesawa, Y., Kurosaki, K., Satoh, K., Masuda, Y., Yokose, S., Ece, A., Bua, S., Angeli, A., Supuran, C. T., & Gul, H. I. (2021). Comprehensive study on potent and selective carbonic anhydrase inhibitors: Synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1h-pyrazole-1-yl) benzenesulfonamides. European Journal of Medicinal Chemistry, 217, 113351. https://doi.org/10.1016/j.ejmech.2021.113351
  • Yang, C., Feng, Y., Yang, X., Sun, M., Li, Z., Liu, X., Lu, L., Sun, X., Zhang, J., & He, X. (2020). Synthesis and evaluation of 4-(1,3,4-oxadiazol-2-yl)-benzenesulfonamides as potent carbonic anhydrase inhibitors. Bioorganic & Medicinal Chemistry Letters, 30(2), 126874. https://doi.org/10.1016/j.bmcl.2019.126874

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.