302
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Development of peptide vaccine candidate using highly antigenic PE-PGRS family proteins to stimulate the host immune response against Mycobacterium tuberculosis H37Rv: an immuno-informatics approach

, , &
Pages 3382-3404 | Received 02 Jul 2021, Accepted 24 Feb 2022, Published online: 16 Mar 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1, 19–25.
  • Academy of Science of South Africa. (2011). The Emerging Threat of Drug Resistant Tuberculosis. DOI https://doi.org/10.17159/assaf/0013
  • Adhikari, U. K., Tayebi, M., & Rahma, M. M. (2018). Immunoinformatics approach for epitope-based peptide vaccine design and active site prediction against polyprotein of emerging oropouche virus. Journal of Immunology Research, 2018, 6718022–6718083. https://doi.org/10.1155/2018/6718083. https://doi.org/10.1155/2018/6718083
  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering, 14(8), 529–532. https://doi.org/10.1093/protein/14.8.529
  • Arancibia, S. A., Beltrán, C. J., Aguirre, I. M., Silva, P., Peralta, A. L., Malinarich, F., & Hermoso, M. A. (2007). Toll-like receptors are key participants in innate immune responses. Biological Research, 40(2), 97–112. https://doi.org/10.4067/s0716-97602007000200001
  • Bansal, K., Elluru, S. R., Narayana, Y., Chaturvedi, R., Patil, S. A., Kaveri, S. V., Bayry, J., & Balaji, K. N. (2010). PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. Journal of Immunology (Baltimore, MD: 1950), 184(7), 3495–3504. https://doi.org/10.4049/jimmunol.0903299
  • Basto, A. P., & Leitão, A. (2014). Targeting TLR2 for vaccine development. Journal of Immunology Research, 2014, 619410 https://doi.org/10.1155/2014/619410
  • Behmard, E., Soleymani, B., Najafi, A., & Barzegari, E. (2020). Immunoinformatic design of a COVID-19 subunit vaccine using entire structural immunogenic epitopes of SARS-CoV-2. Sci Rep, 10(1), 20864 https://doi.org/10.1038/s41598-020-77547-4
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Res, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bowie, J. U., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Brennan, M. J. (2017). The enigmatic PE/PPE multigene family of mycobacteria and tuberculosis vaccination. Infect. Immun, 85(6), e00969–16. https://doi.org/10.1128/IAI.00969-16
  • Brewer, T. F. (2000). Preventing tuberculosis with bacillus calmette-guerin vaccine: A meta-analysis of the literature. Clinical Infectious Diseases, 31(Supplement_3), S64–S67. https://doi.org/10.1086/314072
  • Bui, H.-H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7, 153. https://doi.org/10.1186/1471-2105-7-153
  • Byvatov, E., & Schneider, G. (2003). Support vector machine applications in bioinformatics. Appl. Bioinform, 2(2), 67–77.
  • Chatterjee, N., Ojha, R., Khatoon, N., & Prajapati, V. K. (2018). Scrutinizing Mycobacterium tuberculosis membrane and secretory proteins to formulate multiepitope subunit vaccine against pulmonary tuberculosis by utilizing immunoinformatic approaches. Int J Biol Macromol, 118(Pt A), 180–188. https://doi.org/10.1016/j.ijbiomac.2018.06.080
  • Chatterjee, R., Sahoo, P., Mahapatra, S. R., Dey, J., Ghosh, M., Kushwaha, G. S., Misra, N., Suar, M., Raina, V., & Son, Y.-O. (2021). Development of a conserved chimeric vaccine for induction of strong immune response against staphylococcus aureus using immunoinformatics approaches. Vaccines, 9(9), 1038. https://doi.org/10.3390/vaccines9091038)
  • Choi, J. H., & Lee, S. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology, 64(5), 625–635. https://doi.org/10.1007/s00253-004-1559-9
  • Crux, N. B., & Elahi, S. (2017). Human leukocyte antigen (HLA) and immune regulation: How do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis C virus infections? Frontiers in Immunology, 8, 832 https://doi.org/10.3389/fimmu.2017.00832
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods Mol. Biol. (Clifton, N.J, ), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. http://www.pymol.org.
  • Delogu, G., Bigi, F., Hasnain, S. E., & Cataldi, A. (2008). Enigmatic proteins from the surface: The Erp, PE, and PPE Protein Families. The Mycobacterial CellEnvelope, 133–151. https://doi.org/10.1128/9781555815783.ch8.
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England: 1993), 28(9), 1071–1081. https://doi.org/10.1016/j.str.2020.06.006
  • Dey, J., Mahapatra, S. R., Singh, P., Patro, S., Kushwaha, G. S., Misra, N., & Suar, M. (2021). B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microb Pathog, 160, 105171, https://doi.org/10.1016/j.micpath.2021.105171
  • Dhanda, S. K., Gupta, S., Vir, P., & Raghava, G. P. (2013). Prediction of IL4 inducing peptides. Clin Dev Immunol, 2013, 263952. https://doi.org/10.1155/2013/263952
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8, 30 https://doi.org/10.1186/1745-6150-8-30
  • Dhanda, S. K., Mahajan, S., Paul, S., Yan, Z., Kim, H., Jespersen, M. C., Jurtz, V., Andreatta, M., Greenbaum, J. A., Marcatili, P., Sette, A., Nielsen, M., & Peters, B. (2019). IEDB-AR: Immune epitope database-analysis resource in 2019. Nucleic Acids Res, 47(W1), W502–W506. https://doi.org/10.1093/nar/gkz452
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England), 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Doherty, T. M., & Andersen, P. (2005). Vaccines for tuberculosis: Novel concepts and recent progress. Clin Microbiol Rev, 18(4), 687–702. https://doi.org/10.1128/CMR.18.4.687-702.2005
  • Dorosti, H., Eslami, M., & Negahdaripour, M. (2019). Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. Journal of Biomolecular Structure and Dynamics, 37(13), 3524–3535. https://doi.org/10.1080/07391102.2018.1519460.
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 4, https://doi.org/10.1186/1471-2105-8-4.
  • Drage, M. G., Tsai, H.-C., Pecora, N. D., Cheng, T.-Y., Arida, A. R., Shukla, S., Rojas, R. E., Seshadri, C., Moody, D. B., Boom, W. H., Sacchettini, J. C., & Harding, C. V. (2010). Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nature Structural & Molecular Biology, 17(9), 1088–1095. https://doi.org/10.1038/nsmb.1869
  • El-Hachem, N., Haibe-Kains, B., & Khalil, A. (2017). AutoDock and autodocktools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol. Biol. (Clifton, N.J.), 1598, 391–403. https://doi.org/10.1007/978-1-4939-6952-4_20
  • Elsidig, N., Alshahrani, D., Alshehri, M., Alzahrani, M., Alhajjar, S., Aljummah, S., Bin Hussain, I., Alshaalan, M., Alzamil, F., Alodyani, A., & Aljobair, F. (2015). Bacillus Calmette-Guérin vaccine related lymphadenitis in children: Management guidelines endorsed by the Saudi Pediatric Infectious Diseases Society (SPIDS). ). International Journal of Pediatrics & Adolescent Medicine, 2(2), 89–95. https://doi.org/10.1016/j.ijpam.2015.05.003
  • Faridgohar, M., & Nikoueinejad, H. (2017). New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathogens and Global Health, 111(5), 256–264. https://doi.org/10.1080/20477724.2017.1351080 PMID: 28715935; PMCID: PMC5560203.
  • Forbes, E. K., Sander, C., Ronan, E. O., McShane, H., Hill, A. V., Beverley, P. C., & Tchilian, E. Z. (2008). Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. Journal of Immunology (Baltimore, MD: 1950), 181(7), 4955–4964. https://doi.org/10.4049/jimmunol.181.7.4955
  • Galanis, K. A., Nastou, K. C., Papandreou, N. C., Petichakis, G. N., Pigis, D. G., & Iconomidou, V. A. (2021). Linear B-cell epitope prediction for in silico vaccine design: A performance review of methods available via command-line interface. International Journal of Molecular Sciences, 22(6), 3210. https://doi.org/10.3390/ijms22063210
  • Gasteiger, E., Hoogland, C., & Gattiker, A. (2005). Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 571–607. https://doi.org/10.1385/1-59259-890-0:571.
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Getahun, H., Gunneberg, C., Granich, R., & Nunn, P. (2010). HIV infection-associated tuberculosis: The epidemiology and the response. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 50 Suppl 3, S201–S7. https://doi.org/10.1086/651492
  • Global Tuberculosis Report, World Health Organization. (2021).
  • Gopalakrishnan, A., & Salgame, P. (2016). Toll-like receptor 2 in host defense against Mycobacterium tuberculosis: To be or not to be-that is the question. Current Opinion in Immunology, 42, 76–82. https://doi.org/10.1016/j.coi.2016.06.003 PMID: 27326654; PMCID: PMC5086274.
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. (2008). The vienna RNA websuite. Nucleic Acids Research, 36(Web Server issue), W70–W74. https://doi.org/10.1093/nar/gkn188
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S, Open Source Drug Discovery Consortium. (2013). Open-source drug discovery consortium, in silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957 https://doi.org/10.1371/journal.pone.0073957
  • Hawn, T. R., Day, T. A., Scriba, T. J., Hatherill, M., Hanekom, W. A., Evans, T. G., Churchyard, G. J., Kublin, J. G., Bekker, L.-G., & Self, S. G. (2014). Tuberculosis vaccines and prevention of infection. Microbiology and Molecular Biology Reviews: Mmbr, 78(4), 650–671. https://doi.org/10.1128/MMBR.00021-14
  • He, F., & Hu, X. S. (2005). Hubbell's fundamental biodiversity parameter and the Simpson diversity index. Ecology Letters, 8(4), 386–390. https://doi.org/10.1111/j.1461-0248.2005.00729.x
  • Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein-sol: A web tool for predicting protein solubility from sequence . Bioinformatics (Oxford, England), 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–W388. https://doi.org/10.1093/nar/gkt458
  • Irving, M. B., Pan, O., & Scott, J. K. (2001). Random-peptide libraries and antigen-fragment libraries for epitope mapping and the development of vaccines and diagnostics. Current Opinion in Chemical Biology, 5(3), 314–324. https://doi.org/10.1016/S1367-5931(00)00208-8
  • Jeong, J. C., Lin, X., & Chen, X.-W. (2011). On position-specific scoring matrix for protein function prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(2), 308–315. https://doi.org/10.1109/TCBB.2010.93
  • Jilani, T. N. (2020). Active tuberculosis. StatPearls. StatPearls Publishing. 20 November.
  • Kalita, P., Lyngdoh, D. L., Padhi, A. K., (2019). H., Shukla, T. & Tripathi, Development of multi-epitope driven subunit vaccine against Fasciola gigantica using immunoinformatics approach. International Journal of Biological Macromolecules, 138, 224–233. https://doi.org/10.1016/j.ijbiomac.2019.07.024
  • Källberg, M., Margaryan, G., Wang, S., Ma, J., & Xu, J. (2014). RaptorX server: A resource for template-based protein structure modeling. Methods in Molecular Biology (Clifton, N.J.), 1137, 17–27. https://doi.org/10.1007/978-1-4939-0366-5_2 DOI: 10.1007/978-1-4939-0366-5_2
  • Kapopoulou, A., Lew, J. M., & Cole, S. T. (2011). The MycoBrowser portal: A comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinburgh, Scotland), 91(1), 8–13. https://doi.org/10.1016/j.tube.2010.09.006
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297. https://doi.org/10.1093/nar/gks493
  • Kumar, A., & Meena, L. S. (2020). Dual burden of Tuberculosis (TB) and Diabetes Mellitus (DM) as the major risk factor for wide range of population. Diabetes Obes Int J, 5(2), 000229.
  • Lamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., & Tufféry, P. (2016). PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Research, 44(W1), W449–W454. https://doi.org/10.1093/nar/gkw329
  • Larsen, M. V., Lundegaard, C., & Lamberth, K. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform, 8, 424. https://doi.org/10.1186/1471-2105-8-424
  • Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37(Database issue), D355–9. Jan(Database issue):https://doi.org/10.1093/nar/gkn860
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK – a programme to check the stereochemical quality of protein structure. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lawn, S. D., & Zumla, A. I. (2011). Tuberculosis. Lancet (London, England), 378(9785), 57–72. https://doi.org/10.1016/S0140-6736(10)62173-3
  • Li, Y., Li, H., Dimasi, N., McCormick, J. K., Martin, R., Schuck, P., Schlievert, P. M., & Mariuzza, R. A. (2001). Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity, 14(1), 93–104. https://doi.org/10.2210/pdb1HQR/pdb
  • Lindenstrom, T., Agger, E. M., Korsholm, K. S., Darrah, P. A., Aagaard, C., Seder, R. A., Rosenkrands, I., & Andersen, P. (2009). Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. Journal of Immunology (Baltimore, MD: 1950), 182(12), 8047–8055. https://doi.org/10.4049/jimmunol.0801592
  • Madore, D. V., Meade, B. D., Rubin, F., Deal, C., & Lynn, F., Meeting Contributors (2010). Meeting contributors. Utilization of serologic assays to support efficacy of vaccines in nonclinical and clinical trials: Meeting at the crossroads. Vaccine, 28(29), 4539–4547. https://doi.org/10.1016/j.vaccine.2010.04.094
  • Mahapatra, S. R., Dey, J., Kaur, T., Sarangi, R., Bajoria, A. A., Kushwaha, G. S., Misra, N., & Suar, M. (2021). Immunoinformatics and molecular docking studies reveal a novel multi-epitope peptide vaccine against pneumonia infection. Vaccine, 39(42), 6221–6237. https://doi.org/10.1016/j.vaccine.2021.09.025
  • Mahapatra, S. R., Dey, J., Kushwaha, G. S., Puhan, P., Mohakud, N. K., Panda, S. K., Lata, S., Misra, N., & Suar, M. (2021). Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella serovars. Journal of Biomolecular Structure and Dynamics, 1–13. . https://doi.org/10.1080/07391102.2021.1964600
  • Manavalan, B., Govindaraj, R. G., Shin, T. H., Kim, M. O., & Lee, G. (2018). iBCE-EL: A new ensemble learning framework for improved linear b-cell epitope prediction. Frontiers in Immunology, 9, 1695. https://doi.org/10.3389/fimmu.2018.01695
  • Maupetit, J., Derreumaux, P., & Tuffery, P. (2009). PEP-FOLD: An online resource for de novo peptide structure prediction. Nucleic Acids Res, 37(Web Server issue), W498–W503. (Web Server issue), https://doi.org/10.1093/nar/gkp323
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics (Oxford, England), 16(4), 404–405. https://doi.org/10.1093/bioinformatics/16.4.404
  • Meena, L. S. (2015). An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37 Rv and their potential as new drug targets. Biotechnology and Applied Biochemistry, 62(2), 145–153. https://doi.org/10.1002/bab.1266
  • Meena, L. S., Kumar, A., Shivangi., & Agarwal, P. (2020). Interconnection of mycobacterium tuberculosis with host immune system. J Respir Dis Med, 2, 1–6.  https://doi.org/10.15761/JRDM.1000112
  • Meena, L. S., & Meena, J. (2016). Cloning and characterization of a novel PE_PGRS60 protein (Rv3652) of Mycobacterium tuberculosis H37 Rv exhibit fibronectin-binding property. Biotechnology and Applied Biochemistry, 63(4), 525–531. https://doi.org/10.1002/bab.1411
  • Meena, L. S. & Rajni, (2010). Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. Febs J, 277(11), 2416–2427. https://doi.org/10.1111/j.1742-4658.2010.07666.x
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Monu, M. & Meena, L. S, (2016). Biochemical characterization of PE_PGRS61 family protein of Mycobacterium tuberculosis H37Rv reveals the binding ability to fibronectin. Iran J Basic Med Sci, 19(10), 1105–1113.
  • Mukhopadhyay, S., & Balaji, K. N. (2011). The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland), 91(5), 441–447. https://doi.org/10.1016/j.tube.2011.04.004
  • Nagpal, G., Usmani, S. S., Dhanda, S. K., Kaur, H., Singh, S., Sharma, M., & Raghava, G. P. S. (2017). Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Scientific Reports, 7, 42851. https://doi.org/10.1038/srep42851
  • Nain, Z., Karim, M. M., Sen, M. K., & Adhikari, U. K. (2020). Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans: An integrated vaccinomics approach. Molecular Immunology, 120, 146–163. https://doi.org/10.1016/j.molimm.2020.02.
  • Nielsen, M., Lundegaard, C., Blicher, T., Peters, B., Sette, A., Justesen, S., Buus, S., & Lund, O. (2008). Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Computational Biology, 4(7), e1000107 https://doi.org/10.1371/journal.pcbi.1000107
  • Ojha, R., Nandani, R., & Prajapati, V. K. (2019). Contriving multiepitope subunit vaccine by exploiting structural and nonstructural viral proteins to prevent Epstein-Barr virus-associated malignancy. J Cell Physiol, 234(5), 6437–6448. https://doi.org/10.1002/jcp.27380
  • Olsen, A., Chen, Y., Ji, Q., Zhu, G., De Silva, A. D., Vilchèze, C., Weisbrod, T., Li, W., Xu, J., Larsen, M., Zhang, J., Porcelli, S. A., Jacobs, W. R., & Chan, J. (2016). Targeting Mycobacterium tuberculosis tumor necrosis factor alpha-downregulating genes for the development of antituberculous vaccines. mBio, 7(3), e01023–15. https://doi.org/10.1128/mBio.01023-15
  • Patni, K., Agarwal, P., Kumar, A., & Meena, L. S. (2021). Computational evaluation of anticipated PE_PGRS39 protein involvement in host–pathogen interplay and its integration into vaccine development. 3 Biotech, 11(4), 1–17. https://doi.org/10.1007/s13205-021-02746-3
  • Patterson, B., & Wood, R. (2019). Is cough really necessary for TB transmission? Tuberculosis (Edinburgh, Scotland), 117, 31–35. https://doi.org/10.1016/j.tube.2019.05.003
  • Pecora, N. D., Gehring, A. J., Canaday, D. H., Boom, W. H., & Harding, C. V. (2006). Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. Journal of Immunology (Baltimore, MD: 1950), Jul 1177(1), 422–429. https://doi.org/10.4049/jimmunol.177.1.422 PMID: 16785538.
  • Ponomarenko, J., Bui, H. H., & Li, W. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform, 9(1), 1–8. https://doi.org/10.1186/1471-2105-9-514
  • Puigbò, P., Bravo, I. G., & Garcia-Vallvé, S. (2008). E-CAI: A novel server to estimate an expected value of codon adaptation index (eCAI). BMC Bioinform, 9(65), 1–7. https://doi.org/10.1186/1471-2105-9-65.
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862 https://doi.org/10.1371/journal.pone.0009862
  • Rose, P. W., Prlić, A., & Altunkaya, A. (2016). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45(D1), D271-D281. https://doi.org/10.1093/nar/gkw1000.
  • Salim, B., Mutassim Murad, N., & Abdelmagid, Z. (2018). Prediction of an epitope-based vaccine against human immunodeficiency virus hiv an in-silico approach. Journal of Vaccines, Immunology and Immunopathology, 2(2), J110. https://doi.org/10.29011/2575-789X.000110
  • Samad, A., Ahammad, F., & Nain, Z. (2020). Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. Journal of Biomolecular Structure and Dynamics., 1–17. https://doi.org/10.1080/07391102.2020.1792347.
  • Sandhu, G. K. (2011). Tuberculosis: Current situation, challenges and overview of its control programs in India. J Glob Infect Dis, 3(2), 143–150. https://doi.org/10.4103/0974-777X.81691
  • Sarkar, B., Ullah, M. A., & Araf, Y. (2021). Designing novel epitope-based polyvalent vaccines against herpes simplex virus-1 and 2 exploiting the immunoinformatics approach. Journal of Biomolecular Structure and Dynamics., 39(17), 6585–6605. https://doi.org/10.1080/07391102.2020.1803969.
  • Sasaki, S., & Okuda, K. (2000). The use of conventional immunologic adjuvants in DNA vaccine preparations. Humana Press (pp. 241–249). https://doi.org/10.1385/1-59259-688-6:241
  • Sayed, S. B., Nain, Z., Khan, M. S. A., Abdulla, F., Tasmin, R., & Adhikari, U. K. (2020). Exploring lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. International Journal of Peptide Research and Therapeutics, 26(4), 2089–2019. Advance online publication. https://doi.org/10.1007/s10989-019-10003-8
  • Sharma, N., Patiyal, S., Dhall, A., Pande, A., Arora, C., & Raghava, G. P. S. (2021). AlgPred 2.0: An improved method for predicting allergenic proteins and mapping of IgE epitopes. Briefings in Bioinformatics, 22(4), bbaa294, https://doi.org/10.1093/bib/bbaa294. https://doi.org/10.1093/bib/bbaa294
  • Singh, P., Kant, S., Gaur, P., Tripathi, A., & Pandey, S. (2018). Extra pulmonary tuberculosis: An overview and review of literature. International Journal of Life-Sciences Scientific Research, 4(1), 1539–1541. https://doi.org/10.21276/ijlssr.2018.4.1.5
  • Skeiky, Y., & Sadoff, J. (2006). Advances in tuberculosis vaccine strategies. Nature Reviews. Microbiology, 4(6), 469–476. https://doi.org/10.1038/nrmicro1419
  • Systèmes, D. (2016). BIOVIA discovery studio dassault systmes BIOVIA. Discovery Studio Modeling Environment, Release 2017. Dassault Systemes.
  • Tahir Ul Qamar, M., Saleem, S., Ashfaq, U. A., Bari, A., Anwar, F., & Alqahtani, S. (2019). Epitope-based peptide vaccine design and target site depiction against middle east respiratory syndrome coronavirus: An immune-informatics study. Journal of Translational Medicine, 17(1), 362 https://doi.org/10.1186/s12967-019-2116-8
  • Tu, M., Feng, L., Wang, Z., Qiao, M., Shahidi, F., Lu, W., & Du, M. (2017). Sequence analysis and molecular docking of antithrombotic peptides from casein hydrolysate by trypsin digestion. Journal of Functional Foods., 32, 313–323. https://doi.org/10.1016/j.jff.2017.03.015
  • van Crevel, R., Ottenhoff, T. H., & van der Meer, J. W. (2002). Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev, 15(2), 294–309. Aprhttps://doi.org/10.1128/CMR.15.2.294-309.2002 PMID: 11932234; PMCID: PMC118070.
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330. https://doi.org/10.1093/nar/gkz397
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Wingfield, P. T. (2015). Overview of the purification of recombinant proteins. Current Protocols in Protein Science, 80, 6.1.1–6.1.35. https://doi.org/10.1002/0471140864.ps0601s80
  • Xiaoyong, P., Zuallaert, J., Wang, X., Shen, H., Campos, E. P., Marushchak, D. O., & Neve, W. D. (2021). ToxDL: Deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics (Oxford, England), 36(21), 5159–5168. https://doi.org/10.1093/bioinformatics/btaa656
  • Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Scientific Reports, 11(1), 3238. https://doi.org/10.1038/s41598-021-81749-9
  • Zhou, Z., Schnake, P., Xiao, L., & Lal, A. A. (2004). Enhanced expression of a recombinant malaria candidate vaccine in Escherichia coli by codon optimization. Protein Expression and Purification, 34(1), 87–94. https://doi.org/10.1016/j.pep.2003.11.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.