228
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational studies suggest compounds restoring function of p53 cancer mutants can bind SARS-CoV-2 spike protein

& ORCID Icon
Pages 3368-3381 | Received 27 Dec 2021, Accepted 23 Feb 2022, Published online: 25 Mar 2022

References

  • Aloni-Grinstein, R., Charni-Natan, M., Solomon, H., & Rotter, V. (2018). Rotter, V. p53 and the viral connection: Back into the future. Cancers, 10(6), 178. doi: 10.3390/cancers10060178
  • Asmana, N. R. (2014). Human interferon alpha-2b: A therapeutic protein for cancer treatment. Scientifica (Cairo), 2014, 970315.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bitencourt-Ferreira, G., Veit-Acosta, M., & Azevedo, W. F. D. Jr. (2019). Van der Waals potential in protein complexes. Docking screens for drug discovery. Methods in Molecular Biology, 2053, 79–91.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101–014107.
  • Cook, A. M., McDonnell, A. M., Lake, R. A., & Nowak, A. K. (2016). Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology, 5(3), e1066062. https://doi.org/10.1080/2162402X.2015.1066062
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.
  • Dassault Systèmes BIOVIA. (2017). Discovery Studio Modeling Environment, Release 2017. Dassault Systèmes.
  • Deganutti, G., Prischi, F., & Reynolds, C. A. (2021). Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein. Journal of Computer-Aided Molecular Design, 35(2), 195–207. https://doi.org/10.1007/s10822-020-00356-4
  • Ebrahimi, K. H. (2020). SARS-CoV-2 spike glycoprotein-binding proteins expressed by upper respiratory tract bacteria may prevent severe viral infection. FEBS Letters, 594, 1651–1660.
  • Elgohary, S., Elkhodiry, A. A., Amin, N. S., Stein, U., & El Tayebi, H. M. (2021). Thymoquinone: A tie-breaker in SARS-CoV2-infected cancer patients? Cells, 10(2), 302. https://doi.org/10.3390/cells10020302
  • Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. A., Urquiza, J., Ramirez, D., Alonso, C., Campillo, N. E., & Martinez, A. (2020). COVID-19: Drug targets and potential treatments. Journal of Medicinal Chemistry, 63(21), 12359–12386.
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(Web Server issue), W270–W277.
  • Guaraldi, G., Meschiari, M., Cozzi-Lepri, A., Milic, J., Tonelli, R., Menozzi, M., Franceschini, E., Cuomo, G., Orlando, G., Borghi, V., Santoro, A., Di Gaetano, M., Puzzolante, C., Carli, F., Bedini, A., Corradi, L., Fantini, R., Castaniere, I., Tabbì, L., … Mussini, C. (2020). Tocilizumab in patients with severe COVID-19: A retrospective cohort study. The Lancet Rheumatology, 2(8), e474–e84. https://doi.org/10.1016/S2665-9913(20)30173-9
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • Kelley, L. A., Gardner, S. P., & Sutcliffe, M. J. (1996). An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Engineering, 9(11), 1063–1065.
  • Kuderer, N. M., Choueiri, T. K., Shah, D. P., Shyr, Y., Rubinstein, S. M., Rivera, D. R., Shete, S., Hsu, C.-Y., Desai, A., de Lima Lopes, G., Grivas, P., Painter, C. A., Peters, S., Thompson, M. A., Bakouny, Z., Batist, G., Bekaii-Saab, T., Bilen, M. A., Bouganim, N., … Warner, J. L., COVID-19 and Cancer Consortium. (2020). Clinical impact of COVID-19 on patients with cancer (CCC19): A cohort study. Lancet (London, England), 395(10241), 1907–1918.
  • Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210–1223. https://doi.org/10.1016/j.jiph.2020.06.016
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). Open source drug discovery consortium; Lynn, A. g_mmpbsa - A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kupferschmidt, K., & Cohen, J. (2020). Will novel virus go pandemic or be contained? Science (New York, N.Y.), 367(6478), 610–611. https://doi.org/10.1126/science.367.6478.610
  • La Rosée, F., Bremer, H. C., Gehrke, I., Kehr, A., Hochhaus, A., Birndt, S., Fellhauer, M., Henkes, M., Kumle, B., Russo, S. G., & La Rosée, P. (2020). The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia, 34(7), 1805–1815. https://doi.org/10.1038/s41375-020-0891-0
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Lauer, Y. M., & Lozoya, J. C. (2016). p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. Proceedings of the National Academy of Sciences, 113(35), E5 192–E5 201. https://doi.org/10.1073/pnas.1603435113
  • Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (New York, N.Y.), 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480
  • Luecke. (2015). Small molecules for restoring function to p53 cancer mutants. United States Patent Application Publication (Pub. No. US 2015/0307519 A1).
  • MacKerell, A. D., Jr.Feig, M., & Brooks, I. I. I C. L. (2004). Improved treatment of the protein backbone in empirical force fields. Journal of the American Chemical Society, 126(3), 698–699.
  • Maringe, C., Spicer, J., Morris, M., Purushotham, A., Nolte, E., Sullivan, R., Rachet, B., & Aggarwal, A. (2020). The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. The Lancet. Oncology, 21(8), 1023–1034.
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM- PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 18(1), 113–135. https://doi.org/10.1023/A:1008763014207
  • Miroshnychenko, K. V., & Shestopalova, A. V. (2021). Combined use of the hepatitis C drugs and amentoflavone could interfere with binding of the spike glycoprotein of SARS-CoV-2 to ACE2: The results of a molecular simulation study. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.1914168
  • Nandi, S., Kumar, M., & Saxena, A. K. (2021). Repurposing of drugs and HTS to combat SARS-CoV-2 main protease utilizing structure-based molecular docking. Letters in Drug Design & Discovery. https://doi.org/10.2174/1570180818666211007111105
  • Nandi, S., Kumar, M., Saxena, M., & Saxena, A. K. (2021). The antiviral and antimalarial drug repurposing in quest of chemotherapeutics to combat COVID-19 utilizing structure-based molecular docking. Combinatorial Chemistry & High Throughput Screening, 24(7), 1055–1068.
  • Nandi, S., Roy, H., Gummadi, A., & Saxena, A. K. (2021). Exploring spike protein as potential target of novel coronavirus and to inhibit the viability utilizing natural agents. Current Drug Targets, 22(17), 2006–2020.
  • Newman, L. A., Winn, R. A., & Carethers, J. M. (2021). Similarities in Risk for COVID-19 and Cancer Disparities. Clinical Cancer Research, 27, 24–27.
  • Oren, M., & Rotter, V. (2010). Mutant p53 gain-of-function in cancer. Cold Spring Harbor Perspectives in Biology, 2(2), a001107. https://doi.org/10.1101/cshperspect.a001107
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pathania, A. S., Prathipati, P., Abdul, B. A. A., Chava, S., Katta, S. S., Gupta, S. C., Gangula, P. R., Pandey, M. K., Durden, D. L., Byrareddy, S. N., & Challagundla, K. B. (2021). COVID-19 and cancer comorbidity: Therapeutic opportunities and challenges. Theranostics, 11(2), 731–753. https://doi.org/10.7150/thno.51471
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Ramaswamy, A., Nayak, L., Roy Moulik, N., Sengar, M., Chinnaswamy, G., Jobanputra, K., Shah, M. J., Kapoor, A., Joshi, A., Kumar, A., Gokarn, A., Bonda, A., Cheriyalinkal Parambil, B., Prasad, M., Bagal, B., Dhamne, C., Narula, G., Jain, H., Ghosh, J., … Prabhash, K. (2020). COVID-19 in cancer patients on active systemic therapy – Outcomes from LMIC scenario with an emphasis on need for active treatment. Cancer Medicine, 9(23), 8747–8753. https://doi.org/10.1002/cam4.3423
  • Richards, M., Anderson, M., Carter, P., Ebert, B. L., & Mossialos, M. (2020). The impact of the COVID-19 pandemic on cancer care. Nature Cancer, 1(6), 565–567. https://doi.org/10.1038/s43018-020-0074-y
  • Roschewski, M., Lionakis, M. S., Sharman, J. P., Roswarski, J., Goy, A., Monticelli, M. A., Roshon, M., Wrzesinski, S. H., Desai, J. V., Zarakas, M. A., Collen, J., Rose, K. M., Hamdy, A., Izumi, R., Wright, G. W., Chung, K. K., Baselga, J., Staudt, L. M., & Wilson, W. H. (2020). Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Science Immunology, 5(48), eabd0110. https://doi.org/10.1126/sciimmunol.abd0110
  • Roy, H., Gummadi, A., Nayak, B. S., Nandi, S., & Saxena, A. K. (2021). Exploring the COVID-19 potential targets: Big challenges to quest specific treatment. Current Topics in Medicinal Chemistry, 21(15), 1337–1359. https://doi.org/10.2174/1568026621666210727162324
  • Saini, K. S., Tagliamento, M., Lambertini, M., McNally, R., Romano, M., Leone, M., Curigliano, G., & Azambuja, E d. (2020). Mortality in patients with cancer and coronavirus disease 2019: A systematic review and pooled analysis of 52 studies. European Journal of Cancer (Oxford, England: 1990), 139, 43–50. https://doi.org/10.1016/j.ejca.2020.08.011
  • Shoemark, D. K., Colenso, C. k., Toelzer, C., Gupta, K., Sessions, R. B., Davidson, A. D., Berger, I., Schaffitzel, C., Spencer, J., & Mulholland, A. J. (2021). Molecular simulations suggest vitamins, retinoids and steroids as ligands of the free fatty acid pocket of the SARS-CoV-2 spike protein. Angewandte Chemie (International ed. in English), 60(13), 7098–7110.
  • Sinha, S. K., Shakya, A., Prasad, S. K., Singh, S., Gurav, N. S., Prasad, R. S., & Gurav, S. S. (2021). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. Journal of Biomolecular Structure & Dynamics, 39(9), 3244–3255.
  • Smith, S. M., Boppana, A., Traupman, J. A., Unson, E., Maddock, D. A., Chao, A., Dobesh, D. P., Brufsky, A., & Connor, R. I. (2021). Impaired glucose metabolism in patients with diabetes, prediabetes, and obesity is associated with severe COVID‐19. Journal of Medical Virology, 93(1), 409–415.
  • Spoel, D. V. D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). C. GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Tan, C. W., Chia, W. N., Qin, X., Liu, P., Chen, M. I.-C., Tiu, C., Hu, Z., Chen, V. C.-W., Young, B. E., Sia, W. R., Tan, Y.-J., Foo, R., Yi, Y., Lye, D. C., Anderson, D. E., & Wang, L.-F. (2020). A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nature Biotechnology, 38(9), 1073–1078.
  • Tao, W. T., Yu, Q., Li, Y. L., Ge, M., Zhao, Y. L., & Shi, T. (2021). Exploring the interaction between Vancomycin/Teicoplanin and Receptor Binding Domain (RBD) of SARS-CoV-2. Frontiers in Chemistry, 8, 639918. https://doi.org/10.3389/fchem.2020.639918
  • Tian, J., Yuan, X., Xiao, J., Zhong, Q., Yang, C., Liu, B., Cai, Y., Lu, Z., Wang, J., Wang, Y., Liu, S., Cheng, B., Wang, J., Zhang, M., Wang, L., Niu, S., Yao, Z., Deng, X., Zhou, F., … Wang, Z. (2020). Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: A multicentre, retrospective, cohort study. Lancet Oncology, 21(7), 893–903. https://doi.org/10.1016/S1470-2045(20)30309-0
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & MacKerell, A. D. Jr.(2010). CHARMM General Force Field (CGenFF): A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690.
  • Verkhivker, G. M., Agajanian, S., Oztas, D. Z., & Gupta, G. (2021). Comparative perturbation-based modelling of the SARS-CoV-2 spike protein binding with host receptor and neutralizing antibodies: structurally adaptable allosteric communication hotspots define spike sites targeted by global circulating mutations. Biochemistry, 60(19), 1459–1484. https://doi.org/10.1021/acs.biochem.1c00139
  • Wang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid non-covalent interactions. Annual Review of Biophysics and Biomolecular Structure, 30(1), 211–243. https://doi.org/10.1146/annurev.biophys.30.1.211
  • Xu, P., Huang, J., Fan, Z., Huang, W., Qi, M., Lin, X., Song, W., & Yi, L. (2020). Arbidol/IFN-alpha2b therapy for patients with corona virus disease 2019: A retrospective multicenter cohort study. Microbes and Infection, 22(4–5), 200–205.
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yang, Z., Lasker, K., Schneidman-Duhovny, D., Webb, B., Huang, C. C., Pettersen, E. F., Goddard, T. D., Meng, E. C., Sali, A., & Ferrin, T. E. (2012). UCSF Chimera, MODELLER, and IMP: An integrated modeling system. Journal of Structural Biology, 179(3), 269–278.
  • Yao, T., Gao, Y., Cui, Q., Peng, B., Chen, Y., Li, J., Huang, C., He, C., Pu, J., Wei, J., Zhan, Y., Yan, J., Tian, J., Zhang, Z., & Liu, Z. (2020). Clinical characteristics of a group of deaths with COVID-19 pneumonia in Wuhan, China: A retrospective case series. BMC Infectious Diseases, 20(1), 695.
  • Yu, X., Vazquez, A., Levine, A. J., & Carpizo, D. R. (2012). Allele-specific p53 mutant reactivation. Cancer Cell, 21(5), 614–625. https://doi.org/10.1016/j.ccr.2012.03.042
  • Zhang, Y., Hu, S., Wang, J., Xue, Z., Wang, C., & Wang, N. (2021). Dexamethasone inhibits SARS-CoV-2 spike pseudotyped virus viropexis by binding to ACE2. Virology, 554, 83–88. https://doi.org/10.1016/j.virol.2020.12.001
  • Zhao, W., Zhong, Z., Xie, X., Yu, Q., & Liu, J. (2020). CT scans of patients with 2019 novel coronavirus (COVID-19) pneumonia. Theranostics, 10(10), 4606–4613. https://doi.org/10.7150/thno.45016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.