259
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Atomic level and structural understanding of natural ligands inhibiting Helicobacter pylori peptide deformylase through ligand and receptor based screening, SIFT, molecular dynamics and DFT – a structural computational approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 3440-3461 | Received 16 Nov 2021, Accepted 03 Mar 2022, Published online: 16 Mar 2022

References

  • Antczak, C., Shum, D., Escobar, S., Bassit, B., Kim, E., Seshan, V. E., Wu, N., Yang, G., Ouerfelli, O., Li, Y.-M., Scheinberg, D. A., & Djaballah, H. (2007). High-throughput identification of inhibitors of human mitochondrial peptide deformylase. Journal of Biomolecular Screening, 12(4), 521–535. https://doi.org/10.1177/1087057107300463
  • Apfel, C., Banner, D. W., Bur, D., Dietz, M., Hirata, T., Hubschwerlen, C., Locher, H., Page, M. G., Pirson, W., Rossé, G., & Specklin, J. L. (2000). Hydroxamic acid derivatives as potent peptide deformylase inhibitors and antibacterial agents. Journal of Medicinal Chemistry, 43(12), 2324–2331. https://doi.org/10.1021/jm000018k
  • Apfel, C., Banner, D. W., Bur, D., Dietz, M., Hubschwerlen, C., Locher, H., Marlin, F., Masciadri, R., Pirson, W., & Stalder, H. (2001). 2-(2-Oxo-1,4-dihydro-2H-quinazolin-3-yl)- and 2-(2,2-dioxo-1,4-dihydro-2H-2lambda6-benzo[1,2,6]thiadiazin-3-yl)-N-hydroxy-acetamides as potent and selective peptide deformylase inhibitors. Journal of Medicinal Chemistry, 44(12), 1847–1852. https://doi.org/10.1021/jm000352g
  • Axten, J. M., Medina, J. R., Blackledge, C. W., Duquenne, C., Grant, S. W., Bobko, M. A., Peng, T., Miller, W. H., Pinckney, T., Gallagher, T. F., Kulkarni, S., Lewandowski, T., Van Aller, G. S., Zonis, R., Ward, P., & Campobasso, N. (2012). Acylprolinamides: A new class of peptide deformylase inhibitors with in vivo antibacterial activity. Bioorganic & Medicinal Chemistry Letters, 22(12), 4028–4032. https://doi.org/10.1016/j.bmcl.2012.04.086
  • Barge, S., Jade, D., Ayyamperumal, S., Manna, P., Borah, J., Nanjan, C. M. J., Nanjan, M. J., & Talukdar, N. C. (2021). Potential inhibitors for FKBP51: An in silico study using virtual screening, molecular docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2021.1994877
  • Becker, A., Schlichting, I., Kabsch, W., Schultz, S., & Wagner, A. F. (1998). Structure of peptide deformylase and identification of the substrate binding site. The Journal of Biological Chemistry, 273(19), 11413–11416. https://doi.org/10.1074/jbc.273.19.11413
  • Bendjeddou, A., Abbaz, T., Gouasmia, A., & Villemin, D. (2016). Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted molecules using DFT (B3LYP) calculations. International Research Journal of Pure and Applied Chemistry, 12(1), 1–9. https://doi.org/10.9734/IRJPAC/2016/27066
  • Boularot, A., Giglione, C., Artaud, I., & Meinnel, T. (2004). Structure-activity relationship analysis and therapeutic potential of peptide deformylase inhibitors. Current Opinion in Investigational Drugs (London, England: 2000), 5(8), 809–822.
  • Cai, J., Han, C., Hu, T., Zhang, J., Wu, D., Wang, F., Liu, Y., Ding, J., Chen, K., Yue, J., Shen, X., & Jiang, H. (2006). Peptide deformylase is a potential target for anti-Helicobacter pylori drugs: Reverse docking, enzymatic assay, and X-ray crystallography validation. Protein Science : A Publication of the Protein Society, 15(9), 2071–2081. https://doi.org/10.1110/ps.062238406
  • Casalvieri, K. A., Matheson, C. J., Backos, D. S., & Reigan, P. (2020). Molecular docking of substituted pteridinones and pyrimidines to the ATP-binding site of the N-terminal domain of RSK2 and associated MM/GBSA and molecular field datasets. Data in Brief, 29, 105347. https://doi.org/10.1016/j.dib.2020.105347
  • Chen, D. Z., Patel, D. V., Hackbarth, C. J., Wang, W., Dreyer, G., Young, D. C., Margolis, P. S., Wu, C., Ni, Z. J., Trias, J., White, R. J., & Yuan, Z. (2000). Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry, 39(6), 1256–1262. https://doi.org/10.1021/bi992245y
  • Chinnasamy, S., Nagamani, S., & Muthusamy, K. (2015). Zn2+ ion of the snake venom metalloproteinase (SVMP) plays a critical role in ligand binding: A molecular dynamics simulation study. RSC Advances, 5(86), 70566–70576. https://doi.org/10.1039/C5RA14693C
  • Chinnasamy, S., Selvaraj, G., Kaushik, A. C., Kaliamurthi, S., Chandrabose, S., Singh, S. K., Thirugnanasambandam, R., Gu, K., & Wei, D.-Q. (2020). Molecular docking and molecular dynamics simulation studies to identify potent AURKA inhibitors: Assessing the performance of density functional theory, MM-GBSA and mass action kinetics calculations. Journal of Biomolecular Structure & Dynamics, 38(14), 4325–4335. https://doi.org/10.1080/07391102.2019.1674695
  • Cui, K., Lu, W., Zhu, L., Shen, X., & Huang, J. (2013). Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity. Biochemical and Biophysical Research Communications, 435(2), 289–294. https://doi.org/10.1016/j.bbrc.2013.04.026
  • Deng, Z., Chuaqui, C., & Singh, J. (2004). Structural interaction fingerprint (SIFt): A novel method for analyzing three-dimensional protein-ligand binding interactions . Journal of Medicinal Chemistry, 47(2), 337–344. https://doi.org/10.1021/jm030331x
  • Eda, S. R., & Jinka, R. (2019). Combined e-pharmacophore based screening and docking of PI3 kinase with potential inhibitors from a database of natural compounds. Bioinformation, 15(10), 709–715. https://doi.org/10.6026/97320630015709
  • Esther, M., Vijayakumar, S., Kumar, A., Subramanian, M., & Manogar, P. (2017). Molecular docking, ADMET analysis and dynamics approach to potent natural inhibitors against sex hormone binding globulin in male infertility. Pharmacognosy Journal, 9(6s), s35–s43. https://doi.org/10.5530/pj.2017.6s.155
  • Ferrari, A. M., Degliesposti, G., Sgobba, M., & Rastelli, G. (2007). Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorganic & Medicinal Chemistry, 15(24), 7865–7877. https://doi.org/10.1016/j.bmc.2007.08.019
  • Fieulaine, S., Alves de Sousa, R., Maigre, L., Hamiche, K., Alimi, M., Bolla, J.-M., Taleb, A., Denis, A., Pagès, J.-M., Artaud, I., Meinnel, T., & Giglione, C. (2016). A unique peptide deformylase platform to rationally design and challenge novel active compounds. Scientific Reports, 6(1), 35429. https://doi.org/10.1038/srep35429
  • Fiolhais, C., Nogueira, F., & Marques, M. A. (2003). A primer in density functional theory (Vol. 620). Springer.
  • Ganesan, V., Kamal, C., Venkatesh, V., Govindaraju, M., Mary, Y. S., Armaković, S., Armaković, S., Kaya, S., & Panicker, C. Y. (2018). Molecular dynamic simulations, ALIE surface, Fukui functions geometrical, molecular docking and vibrational spectra studies of tetra chloro p and m -xylene. Journal of Molecular Structure, 1171, 253–267. https://doi.org/10.1016/j.molstruc.2018.06.001
  • Gao, J., Cheng, Y., Cui, W., Zhang, F., Zhang, H., Du, Y., & Ji, M. (2012). Prediction of the binding modes between macrolactin N and peptide deformylase from Staphylococcus aureus by molecular docking and molecular dynamics simulations. Medicinal Chemistry Research, 22(6), 2889–2901. https://doi.org/10.1007/s00044-012-0303-8
  • Gázquez, J. (2006). Hardness and softness in density functional theory. In K. D. Sen (Ed.), Chemical hardness. Structure and bonding (Vol 80, pp. 27–43). Springer. https://doi.org/10.1007/BFb0036798
  • Gece, G. (2008). The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science, 50(11), 2981–2992. https://doi.org/10.1016/j.corsci.2008.08.043
  • Geppert, H., Vogt, M., & Bajorath, J. (2010). Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation. Journal of Chemical Information and Modeling, 50(2), 205–216. https://doi.org/10.1021/ci900419k
  • Giglione, C., Pierre, M., & Meinnel, T. (2000). Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Molecular Microbiology, 36(6), 1197–1205. https://doi.org/10.1046/j.1365-2958.2000.01908.x
  • Groche, D., Becker, A., Schlichting, I., Kabsch, W., Schultz, S., & Wagner, A. F. (1998). Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site. Biochemical and Biophysical Research Communications, 246(2), 342–346. https://doi.org/10.1006/bbrc.1998.8616
  • Grujić, M., & Renko, M. (2002). Aminopeptidase inhibitors bestatin and actinonin inhibit cell proliferation of myeloma cells predominantly by intracellular interactions. Cancer Letters, 182(2), 113–119. https://doi.org/10.1016/s0304-3835(02)00086-1
  • Guilloteau, J. P., Mathieu, M., Giglione, C., Blanc, V., Dupuy, A., Chevrier, M., Gil, P., Famechon, A., Meinnel, T., & Mikol, V. (2002). The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: A platform for the structure-based design of antibacterial agents. Journal of Molecular Biology, 320(5), 951–962. https://doi.org/10.1016/S0022-2836(02)00549-1
  • Gupta, S., & Bajaj, A. V. (2018). Extra precision glide docking, free energy calculation and molecular dynamics studies of 1,2-diarylethane derivatives as potent urease inhibitors. Journal of Molecular Modeling, 24(9), 261. https://doi.org/10.1007/s00894-018-3787-4
  • Hackbarth, C. J., Chen, D. Z., Lewis, J. G., Clark, K., Mangold, J. B., Cramer, J. A., Margolis, P. S., Wang, W., Koehn, J., Wu, C., Lopez, S., Withers, G., Gu, H., Dunn, E., Kulathila, R., Pan, S.-H., Porter, W. L., Jacobs, J., Trias, J., … Yuan, Z. (2002). N-alkyl urea hydroxamic acids as a new class of peptide deformylase inhibitors with antibacterial activity. Antimicrobial Agents and Chemotherapy, 46(9), 2752–2764. https://doi.org/10.1128/AAC.46.9.2752-2764.2002
  • Hernick, M., & Fierke, C. (2010). Mechanisms of metal-dependent hydrolases in metabolism. In H.-W. Liu (Ed.), Comprehensive natural products II (pp. 547–581). Elsevier. https://doi.org/10.1016/B978-008045382-8.00178-7
  • Hu, Y., Zhang, M., Lu, B., & Dai, J. (2016). Helicobacter pylori and antibiotic resistance, A continuing and intractable problem. Helicobacter, 21(5), 349–363. https://doi.org/10.1111/hel.12299
  • Huang, J., Van Aller, G. S., Taylor, A. N., Kerrigan, J. J., Liu, W.-S., Trulli, J. M., Lai, Z., Holmes, D., Aubart, K. M., Brown, J. R., & Zalacain, M. (2006). Phylogenomic and biochemical characterization of three Legionella pneumophila polypeptide deformylases. Journal of Bacteriology, 188(14), 5249–5257. https://doi.org/10.1128/jb.00866-05
  • Hussan, K. P S., Parambil, H., Hamza, S., Parameswaran, A., Thayyil, M., & Muraleedharan, K. (2020). DFT and molecular docking studies of a set of non-steroidal anti-inflammatory drugs: Propionic acid derivatives. In S. R. De Lazaro, L. H. Da Silveira Lacerda & R. A. P. Ribeiro (Eds.), Density functional theory calculations. IntechOpen. https://doi.org/10.5772/intechopen.93828
  • IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. (1994). Schistosomes, liver flukes and Helicobacter pylori. IARC Working group on the evaluation of carcinogenic risks to humans. Lyon, 7–14 June 1994. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 61, 1–241.
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2012). Biological agents. Volume 100 B. A review of human carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 100(Pt B):1–441.
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. https://doi.org/10.1021/ci3001277
  • Israelachvili, J. N. (2011). Strong intermolecular forces: Covalent and coulomb interactions. In J. N. Israelachvili (Ed.), Intermolecular and surface forces (3rd ed., pp. 53–70). Academic Press. https://doi.org/10.1016/B978-0-12-375182-9.10003-X
  • Jain, R., Chen, D., White, R., Patel, D., & Yuan, Z. (2005). Bacterial Peptide deformylase inhibitors: A new class of antibacterial agents. Current Medicinal Chemistry, 12(14), 1607–1621. https://doi.org/10.2174/0929867054367194
  • Jaiprakash, N. S., Firoz, A. K. K., & Devanand, B. S. (2015). Peptide deformylase: A new target in antibacterial, antimalarial and anticancer drug discovery. Current Medicinal Chemistry, 22(2), 214–236. https://doi.org/10.2174/0929867321666140826115734
  • Jang, C., Yadav, D. K., Subedi, L., Venkatesan, R., Venkanna, A., Afzal, S., Lee, E., Yoo, J., Ji, E., Kim, S. Y., & Kim, M.-H. (2018). Identification of novel acetylcholinesterase inhibitors designed by pharmacophore-based virtual screening, molecular docking and bioassay. Scientific Reports, 8(1), 14921. https://doi.org/10.1038/s41598-018-33354-6
  • Kalirajan, R., Pandiselvi, A., Gowramma, B., & Balachandran, P. (2019). In-silico design, ADMET screening, MM-GBSA binding free energy of some novel isoxazole substituted 9-anilinoacridines as HER2 inhibitors targeting breast cancer. Current Drug Research Reviews, 11(2), 118–128. https://doi.org/10.2174/2589977511666190912154817
  • Kataria, R., & Khatkar, A. (2019). In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of chlorogenic acid against urease protein and H. pylori bacterium. BMC Chemistry, 13(1), 41. https://doi.org/10.1186/s13065-019-0556-0
  • Kataria, R., & Khatkar, A. (2019). Molecular docking, synthesis, kinetics study, structure-activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chemistry, 13(1), 45. https://doi.org/10.1186/s13065-019-0562-2
  • Khan, M. F., Verma, G., Akhtar, W., Shaquiquzzaman, M., Akhter, M., Rizvi, M., & Alam, M. (2016). Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of Acyl 1,3,4-thiadiazole amides and sulfonamides as antitubulin agents. Arabian Journal of Chemistry, 12(8), 5000–5018. https://doi.org/10.1016/j.arabjc.2016.11.004
  • Kikiowo, B., Ogunleye, A. J., Inyang, O. K., Adelakun, N. S., Omotuyi, O. I., Metibemu, D. S., David, T. I., Oludoyi, O. O., & Ijatuyi, T. T. (2020). Flavones scaffold of Chromolaena odorata as a potential xanthine oxidase inhibitor: Induced fit docking and ADME studies. BioImpacts, 10(4), 227–234. https://doi.org/10.34172/bi.2020.29
  • Kreusch, A., Spraggon, G., Lee, C. C., Klock, H., McMullan, D., Ng, K., Shin, T., Vincent, J., Warner, I., Ericson, C., & Lesley, S. A. (2003). Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: Snapshots of the oxygen sensitivity of peptide deformylase. Journal of Molecular Biology, 330(2), 309–321. https://doi.org/10.1016/s0022-2836(03)00596-5
  • Lin, P., Hu, T., Hu, J., Yu, W., Han, C., Zhang, J., Qin, G., Yu, K., Götz, F., Shen, X., Jiang, H., & Qu, D. (2010). Characterization of peptide deformylase homologues from Staphylococcus epidermidis. Microbiology (Reading, England), 156(Pt 10), 3194–3202. https://doi.org/10.1099/mic.0.038174-0
  • Ma, Y.-C., Yang, B., Wang, X., Zhou, L., Li, W.-Y., Liu, W.-S., Lu, X.-H., Zheng, Z.-H., Ma, Y., & Wang, R.-L. (2019). Identification of novel inhibitor of protein tyrosine phosphatases delta: Structure-based pharmacophore modeling, virtual screening, flexible docking, molecular dynamics simulation, and post-molecular dynamics analysis. Journal of Biomolecular Structure and Dynamics, 38(15), 1–22. https://doi.org/10.1080/07391102.2019.1682050
  • Mandal, R. S., & Das, S. (2015). In silico approach towards identification of potential inhibitors of Helicobacter pylori DapE. Journal of Biomolecular Structure & Dynamics, 33(7), 1460–1473. https://doi.org/10.1080/07391102.2014.954272
  • Marondedze, E. F., Govender, K. K., & Govender, P. P. (2020). Ligand-based pharmacophore modelling and virtual screening for the identification of amyloid-beta diagnostic molecules. Journal of Molecular Graphics & Modelling, 101, 107711. https://doi.org/10.1016/j.jmgm.2020.107711
  • Nain, Z., Sayed, S. B., Karim, M. M., Islam, M. A., & Adhikari, U. K. (2020). Energy-optimized pharmacophore coupled virtual screening in the discovery of quorum sensing inhibitors of LasR protein of Pseudomonas aeruginosa. Journal of Biomolecular Structure & Dynamics, 38(18), 5374–5388. https://doi.org/10.1080/07391102.2019.1700168
  • Nayak, C., Chandra, I., & Singh, S. K. (2019). An in silico pharmacological approach toward the discovery of potent inhibitors to combat drug resistance HIV-1 protease variants. Journal of Cellular Biochemistry, 120(6), 9063–9081. https://doi.org/10.1002/jcb.28181
  • Oliveira, L. M., Araújo, J. S., Costa, D. B., Santos, M., Santos, A. F., & Leite, F. H. A. (2018). Virtual screening for the selection of new candidates to Trypanosoma cruzi farnesyl pyrophosphate synthase inhibitors. Journal of the Brazilian Chemical Society, 29, 2554–2568.
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Padmaja, L., Ravikumar, C., Sajan, D., Hubert, J. I., Jayakumar, V. S., Pettit, G. R., & Faurskov, N. O. (2009). Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. Journal of Raman Spectroscopy, 40(4), 419–428. https://doi.org/10.1002/jrs.2145
  • Parr, R. G. (1980). Density functional theory of atoms and molecules. In K. Fukui & B. Pullman (Eds.), Horizons of quantum chemistry (pp. 5–15). Springer.
  • Pichota, A., Duraiswamy, J., Yin, Z., Keller, T. H., Alam, J., Liung, S., Lee, G., Ding, M., Wang, G., Chan, W. L., Schreiber, M., Ma, I., Beer, D., Ngew, X., Mukherjee, K., Nanjundappa, M., Teo, J. W. P., Thayalan, P., Yap, A., … Cynamon, M. (2008). Peptide deformylase inhibitors of Mycobacterium tuberculosis: Synthesis, structural investigations, and biological results. Bioorganic & Medicinal Chemistry Letters, 18(24), 6568–6572. https://doi.org/10.1016/j.bmcl.2008.10.040
  • Ragusa, S., Blanquet, S., & Meinnel, T. (1998). Control of peptide deformylase activity by metal cations. Journal of Molecular Biology, 280(3), 515–523. https://doi.org/10.1006/jmbi.1998.1883
  • Rajagopalan, P. T., Datta, A., & Pei, D. (1997). Purification, characterization, and inhibition of peptide deformylase from Escherichia coli. Biochemistry, 36(45), 13910–13918. https://doi.org/10.1021/bi971155v
  • Rampogu, S., Zeb, A., Baek, A., Park, C., Son, M., & Lee, K. W. (2018). Discovery of potential plant-derived peptide deformylase (PDF) inhibitors for multidrug-resistant bacteria using computational studies. Journal of Clinical Medicine, 7(12), 563. https://doi.org/10.3390/jcm7120563
  • Ranjith, P. K., Al-Abdullah, E. S., Al-Omary, F. A. M., El-Emam, A. A., Anto, P. L., Sheena, M. Y., Armaković, S., Armaković, S. J., Zitko, J., Dolezal, M., & Van Alsenoy, C. (2017). FT-IR and FT-Raman characterization and investigation of reactive properties of N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide by molecular dynamics simulations and DFT calculations. Journal of Molecular Structure, 1136, 14–24. https://doi.org/10.1016/j.molstruc.2017.01.079
  • Raza, H., Abbas, Q., Hassan, M., Eo, S. H., Ashraf, Z., Kim, D., Phull, A. R., Kim, S. J., Kang, S. K., & Seo, S. Y. (2017). Isolation, characterization, and in silico, in vitro and in vivo antiulcer studies of isoimperatorin crystallized from Ostericum koreanum. Pharmaceutical Biology, 55(1), 218–226. https://doi.org/10.1080/13880209.2016.1257641
  • Sangeetha, K., Aravindakshan, K., & Hussan, K. P S. (2017). Insight into the theoretical and experimental studies of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone N (4)-methyl- N (4)- phenylthiosemicarbazone – A potential NLO material. Journal of Molecular Structure, 1150, 135–145. https://doi.org/10.1016/j.molstruc.2017.08.078
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Segall, M., Lindan, P., Probert, M., Pickard, C., Hasnip, P., Clark, S., & Payne, M. (2002). First-principles simulation: Ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14(11), 2717–2744. https://doi.org/10.1088/0953-8984/14/11/301
  • Shelley, J., Cholleti, A., Frye, L., Greenwood, J., Timlin, M., & Uchimaya, M. (2008). Epik: A software program for pK( a ) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Siddique, O., Ovalle, A., Siddique, A. S., & Moss, S. F. (2018). Helicobacter pylori Infection: An update for the internist in the age of increasing global antibiotic resistance. The American Journal of Medicine, 131(5), 473–479. https://doi.org/10.1016/j.amjmed.2017.12.024
  • Singh, S. B., Genilloud, O., & Peláez, F. (2010). Terrestrial microorganisms – filamentous bacteria. In H.-W. Liu (Ed.), Comprehensive natural products II (pp. 109–140). Elsevier. https://doi.org/10.1016/B978-008045382-8.00036-8
  • Smith, K. J., Petit, C. M., Aubart, K., Smyth, M., McManus, E., Jones, J., Fosberry, A., Lewis, C., Lonetto, M., & Christensen, S. B. (2003). Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species. Protein Science: A Publication of the Protein Society, 12(2), 349–360. https://doi.org/10.1110/ps.0229303
  • Stockwell, B. R. (2004). Exploring biology with small organic molecules. Nature, 432(7019), 846–854. https://doi.org/10.1038/nature03196
  • Sureshkumar, B., Mary, Y. S., Panicker, C. Y., Suma, S., Armaković, S., Armaković, S. J., Van Alsenoy, C., & Narayana, B. (2020). Quinoline derivatives as possible lead compounds for anti-malarial drugs: Spectroscopic, DFT and MD study. Arabian Journal of Chemistry, 13(1), 632–648. https://doi.org/10.1016/j.arabjc.2017.07.006
  • Syed, A. (2016). Molecular docking studies of sesquiterpenoids against Helicobacter pylori peptide deformylase. British Journal of Pharmaceutical Research, 10, 1–7.
  • Thorarensen, A., Deibel, M. R., Rohrer, D. C., Vosters, A. F., Yem, A. W., Marshall, V. D., Lynn, J. C., Bohanon, M. J., Tomich, P. K., Zurenko, G. E., Sweeney, M. T., Jensen, R. M., Nielsen, J. W., Seest, E. P., & Dolak, L. A. (2001). Identification of novel potent hydroxamic acid inhibitors of peptidyl deformylase and the importance of the hydroxamic acid functionality on inhibition. Bioorganic & Medicinal Chemistry Letters, 11(11), 1355–1358. https://doi.org/10.1016/s0960-894x(01)00242-6
  • Tripathy, S., Azam, M. A., Jupudi, S., & Sahu, S. K. (2018). Pharmacophore generation, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on benzamide analogues as FtsZ inhibitors. Journal of Biomolecular Structure & Dynamics, 36(12), 3218–3230. https://doi.org/10.1080/07391102.2017.1384401
  • Tshibangu-Kabamba, E., & Yamaoka, Y. (2021). Helicobacter pylori infection and antibiotic resistance – from biology to clinical implications. Nature Reviews Gastroenterology & Hepatology, 18(9), 613–629. https://doi.org/10.1038/s41575-021-00449-x
  • Vanajothi, R., Hemamalini, V., Jeyakanthan, J., & Premkumar, K. (2020). Ligand-based pharmacophore mapping and virtual screening for identification of potential discoidin domain receptor 1 inhibitors. Journal of Biomolecular Structure & Dynamics, 38(9), 2800–2808. https://doi.org/10.1080/07391102.2019.1640132
  • Wenzel, R. P., & Edmond, M. B. (2000). Managing antibiotic resistance. The New England Journal of Medicine, 343(26), 1961–1963. https://doi.org/10.1056/nejm200012283432610
  • Xu, Y., Lai, L., Gabrilove, J., & Scheinberg, D. (1998). Antitumor activity of actinonin in vitro and in vivo. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 4(1), 171–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.