168
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Immune escape facilitation by mutations of epitope residues in RdRp of SARS-CoV-2

, , & ORCID Icon
Pages 3542-3552 | Received 10 Dec 2021, Accepted 05 Mar 2022, Published online: 16 Mar 2022

References

  • Barnes, C. O., West, A. P., Huey-Tubman, K. E., Hoffmann, M. A. G., Sharaf, N. G., Hoffman, P. R., Koranda, N., Gristick, H. B., Gaebler, C., Muecksch, F., Lorenzi, J. C. C., Finkin, S., Hägglöf, T., Hurley, A., Millard, K. G., Weisblum, Y., Schmidt, F., Hatziioannou, T., Bieniasz, P. D., … Bjorkman, P. J. (2020). Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell, 182(4), 828–842. https://doi.org/10.1016/j.cell.2020.06.025
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1969). Interaction models for water in relation to protein hydration. Nature, 224, 175–177.
  • Brenke, R., Hall, D. R., Chuang, G. Y., Comeau, S. R., Bohnuud, T., Beglov, D., Schueler-Furman, O., Vajda, S., & Kozakov, D. (2012). Application of asymmetric statistical potentials to antibody-protein docking. Bioinformatics (Oxford, England), 28(20), 2608–2614. https://doi.org/10.1093/bioinformatics/bts493
  • Cheng, L., Zhang, X., Chen, Y., Wang, D., Zhang, D., Yan, S., Wang, H., Xiao, M., Liang, T., Li, H., Xu, M., Hou, X., Dai, J., Wu, X., Li, M., Lu, M., Wu, D., Tian, R., Zhao, J., … Zhang, S. (2021). Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Signal Transduction and Targeted Therapy, 6(1), 304. https://doi.org/10.1038/s41392-021-00718-w
  • Cucinotta, D., & Vanelli, M. (2020). WHO declares COVID-19 a pandemic. Acta Bio-Medica: Atenei Parmensis, 91(1), 157–160. https://doi.org/10.23750/abm.v91i1.9397
  • Darden, T., York, D., & Pedersen, L. (1993). Pedersen particle mesh Ewald: An N; log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Das, A., Chakrabarti, J., & Ghosh, M. (2013). Conformational contribution to thermodynamics of binding in protein-peptide complexes through microscopic simulation. Biophysical Journal, 104(6), 1274–1284. https://doi.org/10.1016/j.bpj.2012.12.058
  • Dey, J., Mahapatra, S. R., Singh, P., Patro, S., Kushwaha, G. S., Misra, N., & SUar, M. (2021). B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microbial Pathogenesis, 160, 105171. https://doi.org/10.1016/j.micpath.2021.105171
  • Domingo, E. (2000). Viruses at the edge of adaptation. Virology, 270(2), 251–253. https://doi.org/10.1006/viro.2000.0320
  • Dufy, S. (2018). Why are RNA virus mutation rates so damn high? PloS Biology, 16, e3000003.
  • Francica, J. R., Rohena, A. V., Medvec, A., Plesa, G., Riley, J. L., & Bates, P. (2010). Steric shielding of surface epitopes and impaired immune recognition induced by the ebola virus glycoprotein. PLoS Pathogens, 6(9), e1001098. https://doi.org/10.1371/journal.ppat.1001098
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, N.Y.), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Gupta, A. M., Chakrabarti, J., & Mandal, S. (2020). Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes and Infection, 22(10), 598–30189. https://doi.org/10.1016/j.micinf.2020.10.004
  • Jia, H., & Gong, P. (2019). A structure-function diversity survey of the RNA-dependent RNA polymerases from the positive-strand RNA viruses. Frontiers in Microbiology, 10, 1945. https://doi.org/10.3389/fmicb.2019.01945
  • Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., Tang, X., Yu, J., Lan, J., Yuan, J., Wang, H., Zhao, J., Zhang, S., Wang, Y., Shi, X., … Zhang, L. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584(7819), 115–119. https://doi.org/10.1038/s41586-020-2380-z
  • Kabinger, F., Stiller, C., Schmitzová, J., Dienemann, C., Kokic, G., Hillen, H. S., Höbartner, C., & Cramer, P. (2021). Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nature Structural & Molecular Biology, 28(9), 740–746. https://doi.org/10.1038/s41594-021-00651-0
  • Kang, S., Yang, M., He, S., Wang, Y., Chen, X., Chen, Y. Q., Hong, Z., Liu, J., Jiang, G., Chen, Q., Zhou, Z., Zhou, Z., Huang, Z., Huang, X., He, H., Zheng, W., Liao, H. X., Xiao, F., Shan, H., & Chen, S. (2021). A SARS-CoV-2 antibody curbs viral nucleocapsid protein-induced complement hyperactivation. Nature Communication, 12, 2697.
  • Krawczyk, K., Baker, T., Shi, J., & Deane, C. M. (2013). Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Engineering, Design & Selection: PEDS, 26(10), 621–629. https://doi.org/10.1093/protein/gzt043
  • Kumar, S., Kumari, K., & Azad, G. K. (2022). Emerging genetic diversity of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) alters its B-cell epitopes. Biologicals: Journal of the International Association of Biological Standardization, 75, 29–36. https://doi.org/10.1016/j.biologicals.2021.11.002
  • Lefranc, M. P. (2011). IMGT unique numbering for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harbor. Protocols, 6, 633–642.
  • Li, Y., Xu, Z., Lei, Q., Lai, D.-Y., Hou, H., Jiang, H.-W., Zheng, Y.-X., Wang, X.-N., Wu, J., Ma, M.-L., Zhang, B., Chen, H., Yu, C., Xue, J.-B., Zhang, H.-N., Qi, H., Guo, S.-J., Zhang, Y., Lin, X., … Tao, S.-C. (2021). Antibody landscape against SARS-CoV-2 reveals significant differences between non-structural/accessory and structural proteins. Cell Reports, 36(2), 109391. https://doi.org/10.1016/j.celrep.2021.109391
  • Mahapatra, S. R., Sahoo, S., Dehury, B., Raina, V., Patro, S., Misra, N., & Suar, M. (2020). Designing an efficient multi-epitope vaccine displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19 infection. Expert Review of Vaccines, 19(9), 871–885. https://doi.org/10.1080/14760584.2020.1811091
  • Mahapatra, S. R., Dey, J., Kushwaha, G. S., Puhan, P., Mohakud, N. K., Panda, S. K., Lata, S., Misra, N., & Suar, M. (2021). Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella serovars. Journal of Biomolecular Structure and Dynamics, 31, 1–13. https://doi.org/10.1080/07391102.2021.1964600
  • Manli, W., Ruiyuan, C., Leike, Z., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Mercatelli, D., & Giorgi, F. M. (2020). Geographic and genomic distribution of SARS-CoV-2 mutations. Frontiers in Microbiology, 11, 1800. https://doi.org/10.3389/fmicb.2020.01800
  • Moisa, A. A., & Kolesanova, E. F. (2012). Synthetic peptide vaccines. In P. K. Roy (Eds.), Insight and control of infectious disease in global scenario, 57(1), 14–30.
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Pachetti, M., Marini, B., Benedetti, F., Giudici, F., Mauro, E., Storici, P., Masciovecchio, C., Angeletti, S., Ciccozzi, M., Gallo, R. C., Zella, D., & Ippodrino, R. (2020). Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of Translational Medicine, 18(1), 179. https://doi.org/10.1186/s12967-020-02344-6
  • Peiris, J. S. M., Lai, S. T., Poon, L. L. M., Guan, Y., Yam, L. Y. C., Lim, W., Nicholls, J., Yee, W. K. S., Yan, W. W., Cheung, M. T., Cheng, V. C. C., Chan, K. H., Tsang, D. N. C., Yung, R. W. H., Ng, T. K., & Yuen, K. Y. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, 361(9366), 1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2
  • Peng, Q., Peng, R., Yuan, B., Wang, M., Zhao, J., Fu, L., Qi, J., & Shi, Y. (2021). Structural basis of SARS-CoV-2 polymerase inhibition by favipiravir. Innovation (New York, N.Y.), 2(1), 100080. https://doi.org/10.1016/j.xinn.2021.100080
  • Prabakaran, P., Gan, J., Feng, Y., Zhu, Z., Choudhry, V., Xiao, X., Ji, X., & Dimitrov, D. S. (2006). Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. The Journal of Biological Chemistry, 281(23), 15829–15836. https://doi.org/10.1074/jbc.M600697200
  • Rubinstein, N. D., Mayrose, I., Halperin, D., Yekutieli, D., Gershoni, J. M., & Pupko, T. (2008). Computational characterization of B-cell epitopes. Molecular Immunology, 45(12), 3477–3489. https://doi.org/10.1016/j.molimm.2007.10.016
  • Samad, A., Ahammad, F., Nain, Z., Alam, R., Imon, R. R., Hasan, M., & Rahman, M. S. (2022). Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. Journal of Biomolecular Structure & Dynamics, 40(1), 14–30. https://doi.org/10.1080/07391102.2020.1792347
  • Singh, A., Thakur, M., Sharma, L. K., & Chandra, K. (2020). Designing a multi-epitope peptide based vaccine against SARS-CoV-2. Scientific Reports, 10(1), 16219. https://doi.org/10.1038/s41598-020-73371-y
  • Siracusano, G., Pastori, C., & Lopalco, L. (2020). Humoral immune responses in COVID-19 patients: A window on the state of the art. Frontiers in Immunology, 11, 1049. https://doi.org/10.3389/fimmu.2020.01049
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xiao, A. T., Gao, C., & Zhang, S. (2020). Profile of specific antibodies to SARS-CoV-2: The first report. The Journal of Infection, 81(1), 147–e178. https://doi.org/10.1016/j.jinf.2020.03.012
  • Yashvardhini, N., Kumar, A., & Jha, D. K. (2021). Immunoinformatics identification of B- and T-cell epitopes in the RNA-dependent RNA polymerase of SARS-CoV-2. The Canadian Journal of Infectious Disease & Medical Microbiology, eCollection:6627141.
  • Ye, Q., Lu, S., & Corbett, K. D. (2021). Structural basis for SARS-CoV-2 nucleocapsid protein recognition by single-domain antibodies. Frontiers in Immunology, 12, 719037. https://doi.org/10.3389/fimmu.2021.719037
  • Yin, W., Mao, C., Luan, X., Shen, D. D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. C., Tian, G., Jiang, H. W., Tao, S. C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science (New York, N.Y.), 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560
  • Zaki, A. M., Boheemen, S. V., Bestebroer, T. M., Osterhaus, A. D., & Fouchier, R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 367(19), 1814–1820. https://doi.org/10.1056/NEJMoa1211721
  • Zhang, Q., Wang, P., Kim, Y., Haste-Andersen, P., Beaver, J., Bourne, P. E., Bui, H.-H., Buus, S., Frankild, S., Greenbaum, J., Lund, O., Lundegaard, C., Nielsen, M., Ponomarenko, J., Sette, A., Zhu, Z., & Peters, B. (2008). Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Research, 36(Web Server issue), W513–e8. https://doi.org/10.1093/nar/gkn254
  • Zhao, J., Yuan, Q., Wang, H., Liu, W., Liao, X., Su, Y., Wang, X., Yuan, J., Li, T., Li, J., Qian, S., Hong, S., Wang, F., Liu, Y., Wang, Z., He, Q., Li, Z., He, B., Zhang, T., … Zhang, Z. (2020). Antibody responses to SARSCoV-2 in patients of novel coronavirus disease 2019. Clinical Infectious Diseases, 71(16), 2027–2034. https://doi.org/10.1093/cid/ciaa344
  • Zijing, R., Chao, L., Yuting, G., Zhenqing, H., Xinhe, H., Xu, J., & Tai, Yang. (2020). SARS-CoV-2 and SARSCoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). Journal of Medical Virology, 93, 389–400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.