268
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational studies on the design of NCI natural products as inhibitors to SARS-CoV-2 main protease

&
Pages 3741-3751 | Received 07 Nov 2021, Accepted 11 Mar 2022, Published online: 25 Mar 2022

References

  • Abduraman, M. A., Hariono, M., Yusof, R., Abd Rahman, N., Wahab, H. A., & Tan, M. L. (2018). Development of a NS2B/NS3 protease inhibition assay using AlphaScreen® beads for screening of anti-dengue activities. Heliyon, 4(12), e01023. https://doi.org/10.1016/j.heliyon.2018.e01023
  • Alexandrov, V., Lehnert, U., Echols, N., Milburn, D., Engelman, D., & Gerstein, M. (2005). Normal modes for predicting protein motions: A comprehensive database assessment and associated Web tool. Protein Science : a Publication of the Protein Society, 14(3), 633–643. https://doi.org/10.1110/ps.04882105
  • Almlöf, M., Brandsdal, B. O., & Åqvist, J. (2004). Binding affinity prediction with different force fields: examination of the linear interaction energy method. Journal of Computational Chemistry, 25(10), 1242–1254. https://doi.org/10.1002/jcc.20047
  • Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel, M. C., Keskin, O., & Bahar, I. (2001). Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophysical Journal, 80(1), 505–515. https://doi.org/10.1016/S0006-3495(01)76033-X
  • Banerjee, R., Perera, L., & Tillekeratne, L. V. (2021). Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today, 26(3), 804–816. https://doi.org/10.1016/j.drudis.2020.12.005
  • Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Intermolecular forces (pp. 331–342). Springer. https://doi.org/10.1007/978-94-015-7658-1_21
  • Brandsdal, B., F., Österberg, M., Almlöf, I., Feierberg, V., B., Luzhkov., & J., Åqvist. (2003). Free energy calculations and ligand binding. Advances in Protein Chemistry, 66, 123–158. https://doi.org/10.1016/S0065-3233(03)66004-3
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42713–42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Humana Press. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Da Silva, A. W. S., & Vranken, W. F. (2012). ACPYPE-Antechamber python parser interface. BMC Research Notes, 5(1), 367–368. https://doi.org/10.1186/1756-0500-5-367
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Eyal, E., Lum, G., & Bahar, I. (2015). The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics (Oxford, England), 31(9), 1487–1489. https://doi.org/10.1093/bioinformatics/btu847
  • Eyal, E., & Bahar, I. (2008). Toward a molecular understanding of the anisotropic response of proteins to external forces: insights from elastic network models. Biophysical Journal, 94(9), 3424–3435. https://doi.org/10.1529/biophysj.107.120733
  • Gagnon, J. K., Law, S. M., & Brooks, C. L. III, (2016). Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. Journal of Computational Chemistry, 37(8), 753–762. https://doi.org/10.1002/jcc.24259
  • Gehlhaar, D. K., Verkhivker, G. M., Rejto, P. A., Sherman, C. J., Fogel, D. R., Fogel, L. J., & Freer, S. T. (1995). Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chemistry & Biology, 2(5), 317–324. https://doi.org/10.1016/1074-5521(95)90050-0
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Jácome, R., Campillo-Balderas, J. A., de León, S. P., Becerra, A., & Lazcano, A. (2020). Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic. Scientific Reports, 10(1), 1–5. https://doi.org/10.1038/s41598-020-66440-9
  • Javorac, D., Grahovac, L., Manić, L., Stojilković, N., Anđelković, M., Bulat, Z., Đukić - Ćosić, D., Curcic, M., & Djordjevic, A. B. (2020). An overview of safety assessment of the medicines currently used in the treatment of COVID-19 disease. Food and Chemical Toxicology, 144, 111639. https://doi.org/10.1016/j.fct.2020.111639
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Keretsu, S., Bhujbal, S. P., & Cho, S. J. (2020). Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Scientific Reports, 10(1), 14. https://doi.org/10.1038/s41598-020-74468-0
  • Krupanidhi, S., Abraham Peele, K., Venkateswarulu, T. C., Ayyagari, V. S., Nazneen Bobby, M., John Babu, D., Venkata Narayana, A., & Aishwarya, G. (2021). Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: An in silico study. Journal of Biomolecular Structure & Dynamics, 39(15), 5799–5803. https://doi.org/10.1080/07391102.2020.1787226
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, Z., Li, X., Huang, Y.-Y., Wu, Y., Liu, R., Zhou, L., Lin, Y., Wu, D., Zhang, L., Liu, H., Xu, X., Yu, K., Zhang, Y., Cui, J., Zhan, C.-G., Wang, X., & Luo, H.-B. (2020). Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proceedings of the National Academy of Sciences of the United States of America, 117(44), 27381–27387. https://doi.org/10.1073/pnas.2010470117
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and 497 computational approaches to estimate solubility and permeability in drug discovery and 498 development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muegge, I., & Martin, Y. C. (1999). A general and fast scoring function for protein-ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, 42(5), 791–804. https://doi.org/10.1021/jm980536j
  • Muegge, I. (2006). PMF scoring revisited. Journal of Medicinal Chemistry, 49(20), 5895–5902. https://doi.org/10.1021/jm050038s
  • Majumder, R., & Mandal, M. (2022). Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. Journal of Biomolecular Structure and Dynamics, 40(2), 616–696. https://doi.org/10.1080/07391102.2020.1817787
  • Natesh, J., Mondal, P., Penta, D., Abdul Salam, A. A., & Meeran, S. M. (2021). Culinary spice bioactives as potential therapeutics against SARS-CoV-2: Computational investigation. Computers in Biology and Medicine, 128, 104102. https://doi.org/10.1016/j.compbiomed.2020.104102
  • Parrill, A. L., & Reddy, M. R. (Eds.). (1999). Rational drug design: novel methodology and practical applications. American Chemical Society. https://doi.org/10.1021/bk-1999-0719
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Peele, A., Potla Durthi, C., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., Babu, J., Indira, M., Reddy, R., & Venkateswarulu, T. C. (2020). Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked, 19, 100345. https://doi.org/10.1016/j.imu.2020.100345
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Potts, R. O., & Guy, R. H. (1992). Predicting skin permeability. Pharmaceutical Research, 9(5), 663–669. https://doi.org/10.1023/A:1015810312465
  • Ren, Z., Yan, L., Zhang, N., Guo, Y., Yang, C., Lou, Z., & Rao, Z. (2013). The newly emerged SARS-like coronavirus HCoV-EMC also has an "Achilles' heel": Current effective inhibitor targeting a 3C-like protease. Protein & Cell, 4(4), 248–250. https://doi.org/10.1007/s13238-013-2841-3
  • Ross, C., Nizami, B., Glenister, M., Sheik Amamuddy, O., Atilgan, A. R., Atilgan, C., & Tastan Bishop, Ö. (2018). MODE-TASK: large-scale protein motion tools. Bioinformatics (Oxford, England), 34(21), 3759–3763. https://doi.org/10.1093/bioinformatics/bty427
  • Rout, J., Swain, B. C., & Tripathy, U. (2022). In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 40(2), 815–860. https://doi.org/10.1080/07391102.2020.1819879
  • Sampangi-Ramaiah, M. H., Vishwakarma, R., & Shaanker, R. U. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7), 1087–1092. https://doi.org/10.18520/cs/v118/i7/1087-1092
  • Satija, N., & Lal, S. (2007). The molecular biology of SARS coronavirus. Annals of the New York Academy of Sciences, 1102(1), 26–38. https://doi.org/10.1196/annals.1408.002
  • Team, E. (2020). The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Weekly, 2(8), 113. PMID: 34594836.
  • Touret, F., Gilles, M., Barral, K., Nougairède, A., van Helden, J., Decroly, E., de Lamballerie, X., & Coutard, B. (2020). In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-70143-6
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Uyar, A., Kurkcuoglu, O., Nilsson, L., & Doruker, P. (2011). The elastic network model reveals a consistent picture on intrinsic functional dynamics of type II restriction endonucleases. Physical Biology, 8(5), 056001. https://doi.org/10.1088/1478-3975/8/5/056001
  • Verma, S., Twilley, D., Esmear, T., Oosthuizen, C., Reid, A.-M., Nel, M., & Lall, N. (2020). Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). Frontiers in Pharmacology, 11, 561334. https://doi.org/10.3389/fphar.2020.561334
  • Wang, F., Chen, C., Tan, W., Yang, K., & Yang, H. (2016). Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design. Scientific Reports, 6(1), 22612–22677. https://doi.org/10.1038/srep22677
  • Wang, Y.-C., Yang, W.-H., Yang, C.-S., Hou, M.-H., Tsai, C.-L., Chou, Y.-Z., Hung, M.-C., & Chen, Y. (2020). Structural basis of SARS-CoV-2 main protease inhibition by a broad-spectrum anti-coronaviral drug. American Journal of Cancer Research, 10(8), 2535–2545. PMID: 32905393
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X., Liao, M., Bartlam, M., & Rao, Z. (2008). Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. Journal of Virology, 82(5), 2515–2527. https://doi.org/10.1128/JVI.02114-07
  • Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., & Rao, Z. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biology, 3(10), e324. https://doi.org/10.1371/journal.pbio.0030324
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Ziebuhr, J., Snijder, E. J., & Gorbalenya, A. E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. Microbiology, 81(4), 853–879. https://doi.org/10.1099/0022-1317-81-4-853

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.