229
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Anticancer, antioxidant activities and molecular docking study of thiazolidine-4-one and thiadiazol derivatives

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3976-3992 | Received 16 Jan 2022, Accepted 27 Mar 2022, Published online: 25 Apr 2022

References

  • Abdelhameid, M. K., Zaki, I., Mohammed, M. R., & Mohamed, K. O. (2020). Design, synthesis, and cytotoxic screening of novel azole derivatives on hepatocellular carcinoma (HepG2 Cells). Bioorganic Chemistry, 101, 103995. https://doi.org/10.1016/j.bioorg.2020.103995
  • AbdulJabar, L. A., Al-Shawi, A. A., & Mutlaq, D. Z. (2021). Anti-liver and anti-breast cancer activities of 2-thioxo-4-imidazolidinone derivatives. Medicinal Chemistry Research, 30(10), 1943–1953. https://doi.org/10.1007/s00044-021-02769-8
  • Abo‐Bakr, A. M., & Hashem, H. E. (2019). New 1, 3, 4‐thiadiazole derivatives: synthesis, characterization, and antimicrobial activity. Journal of Heterocyclic Chemistry, 56(3), 1038–1047. https://doi.org/10.1002/jhet.3489
  • Al-Shawi, A. A., Hameed, M. F., Ali, N. H., & Hussein, K. A. (2020). Investigations of phytoconstituents, antioxidant and anti-liver cancer activities of Saueda monoica Forssk extracted by microwave-assisted extraction. Asian Pacific Journal of Cancer Prevention, 21(8), 2349–2355. https://doi.org/10.31557/APJCP.2020.21.8.2349
  • Alho, M., Moglioni, A. G., Brousse, B., Moltrasio, G. Y., & D`Accorso, N. B. (2000). Synthesis and characterization of 2, 2-disubstituted thiadiazolines. Arkivoc, 2000(4), 627–640. https://doi.org/10.3998/ark.5550190.0001.413
  • Almandil, N. B., Taha, M., Rahim, F., Wadood, A., Imran, S., Alqahtani, M. A., Bamarouf, Y. A., Ibrahim, M., Mosaddik, A., & Gollapalli, M. (2019). Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorganic Chemistry, 85, 109–116. https://doi.org/10.1016/j.bioorg.2018.12.025
  • Anoop, M. R., Binil, P. S., Suma, S., Sudarsanakumar, M. R., Y, S. M., Varghese, H. T., & Panicker, Y. (2010). Vibrational spectroscopic studies and computational study of ethyl methyl ketone thiosemicarbazone. Journal of Molecular Structure, 969(1–3), 48–54. https://doi.org/10.1016/j.molstruc.2010.01.041
  • Appalanaidu, K., Kotcherlakota, R., Dadmal, T., Bollu, V. S., Kumbhare, R. M., & Patra, C. R. (2016). Synthesis and biological evaluation of novel 2-imino-4-thiazolidinone derivatives as potent anti-cancer agents. Bioorganic & Medicinal Chemistry Letters, 26(21), 5361–5368. https://doi.org/10.1016/j.bmcl.2016.08.013
  • Bade, T. S., Ebrahimi, H. P., Alsalim, T. A., Titinchi, S. J., Abbo, H. S., Bolandnazar, Z., & Ebrahimi, A. (2017). A novel series of 1, 4-dihydropyridine (DHP) derivatives bearing thiazolidin-4-one: From synthesis to structure. Journal of Molecular Structure, 1138, 136–148. https://doi.org/10.1016/j.molstruc.2017.03.005
  • Belluco, P., Gaion, R., Maragno, I., & Dorigo, P. (1990). Etozoline and vascular spasm. Pharmacological Research, 22, 123–124. https://doi.org/10.1016/S1043-6618(09)80059-5
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0
  • Carvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L., & Fraga, C. A. (2004). Synthesis and antitrypanosomal profile of new functionalized 1,3,4-thiadiazole-2-arylhydrazone derivatives, designed as non-mutagenic megazol analogues. Bioorganic & Medicinal Chemistry Letters, 14(24), 5967–5970. https://doi.org/10.1016/j.bmcl.2004.10.007
  • Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. V., & Varambally, S. (2017). UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (New York, NY), 19(8), 649–658. https://doi.org/10.1016/j.neo.2017.05.002
  • Cronin, K., Lake, A., Scott, S., Sherman, R., Noone, A.-M., Howlader, N., Henley, J., Anderson, R., Firth, A., Ma, J., Kohler, B., & Jemal, A. (2018). Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer, 124(13), 2785–2800. https://doi.org/10.1002/cncr.31551
  • Day, P., Cleasby, A., Tickle, I., O'Reilly, M., Coyle, J., Holding, F., McMenamin, R., Yon, J., Chopra, R., Lengauer, C., & Jhoti, H. (2009). Crystal structure of human CDK4 in complex with a D-type cyclin. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4166–4170. https://doi.org/10.1073/pnas.0809645106
  • Dickson, A., Tiwary, P., & Vashisth, H. (2017). Kinetics of ligand binding through advanced computational approaches: a review. Current Topics in Medicinal Chemistry, 17(23), 2626–2641. https://doi.org/10.2174/1568026617666170414142908
  • Duru, R., Njoku, O., & Maduka, I. (2014). Oxidative stress indicators in patients with prostate disorders in Enugu, South-East Nigeria. BioMed Research International, 2014, 1–6. https://doi.org/10.1155/2014/313015
  • Ebrahimi, H. P., Hadi, J. S., Alsalim, T. A., Ghali, T. S., & Bolandnazar, Z. (2015). A novel series of thiosemicarbazone drugs: from synthesis to structure. Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy, 137, 1067–1077. https://doi.org/10.1016/j.saa.2014.08.146
  • Ebrahimi, S. (2010). Synthesis of some pyridyl and cyclohexyl substituted 1, 2, 4 triazole, 1, 3, 4-thiadiazole and 1, 3, 4-oxadiazole derivatives. European Journal of Chemistry, 1(4), 322–324. https://doi.org/10.5155/eurjchem.1.4.322-324.65
  • Eissa, I. H., Dahab, M. A., Ibrahim, M. K., Alsaif, N. A., Alanazi, A., Eissa, S. I., Mehany, A. B., & Beauchemin, A. M. (2021). Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorganic Chemistry, 112, 104965. https://doi.org/10.1016/j.bioorg.2021.104965
  • El-Arabey, A. A., Abdalla, M., & Abd-Allah, A. R. (2020). SnapShot: TP53 status and macrophages infiltration in TCGA-analyzed tumors. International Immunopharmacology, 86, 106758. https://doi.org/10.1016/j.intimp.2020.106758
  • El Rayes, S. M., Ali, I. A., Fathalla, W., & Mahmoud, M. A. (2020). Synthesis and biological activities of some new benzotriazinone derivatives based on molecular docking; Promising HepG2 liver carcinoma inhibitors. ACS Omega, 5(12), 6781–6791. https://doi.org/10.1021/acsomega.0c00116
  • Feitoza, D. D., Alves, A. J., Lima, J., Araújo, J. M., Aguiar, J. S., Rodrigues, M., Silva, T. G., Nascimento, S., & Góes, A. (2012). Synthesis, antimicrobial and cytotoxic activities of 5-benzylidene-2-[(pyridine-4-ylmethylene) hydrazono]-thiazolidin-4-one and 2-[(pyridine-4-ylmethylene) hydrazono]-thiazolidin-4-one derivatives. Química Nova, 35(4), 694–698. https://doi.org/10.1590/S0100-40422012000400007
  • Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386. https://doi.org/10.1002/ijc.29210
  • Gomha, S. M., & Khalil, K. D. (2012). A convenient ultrasound-promoted synthesis of some new thiazole derivatives bearing a coumarin nucleus and their cytotoxic activity. Molecules (Basel, Switzerland), 17(8), 9335–9347. https://doi.org/10.3390/molecules17089335
  • Hammad, S., El-Gazzar, M., Abutaleb, N., Li, D., Ramming, I., Shekhar, A., Abdel-Halim, M., Elrazaz, E., Seleem, M., Bilitewski, U., Abouzid, K., & El-Hossary, E. (2020). Synthesis and antimicrobial evaluation of new halogenated 1,3-thiazolidin-4-ones . Bioorganic Chemistry, 95, 103517. https://doi.org/10.1016/j.bioorg.2019.103517
  • Janowska, S., Paneth, A., & Wujec, M. (2020). Cytotoxic properties of 1, 3, 4-thiadiazole derivatives—A review. Molecules, 25(18), 4309. https://doi.org/10.3390/molecules25184309
  • Jin, Z., Wang, Y., Yu, X.-F., Tan, Q.-Q., Liang, S.-S., Li, T., Zhang, H., Shaw, P.-C., Wang, J., & Hu, C. (2020). Structure-based virtual screening of influenza virus RNA polymerase inhibitors from natural compounds: molecular dynamics simulation and MM-GBSA calculation. Computational Biology and Chemistry, 85, 107241. https://doi.org/10.1016/j.compbiolchem.2020.107241
  • Jothy, S. L., Zuraini, Z., & Sasidharan, S. (2011). Phytochemicals screening, DPPH free radical scavenging and xanthine oxidase inhibitory activities of Cassia fistula seeds extract. Journal of Medicinal Plants Research, 5, 1941–1947.
  • Kakekochi, V., Nikhil P, P., Chandrasekharan, K., & Kumar D, U. (2020). Impact of donor–acceptor alternation on optical power limiting behavior of H–shaped thiophene–imidazo[2, 1-b][1, 3, 4] thiadiazole flanked conjugated oligomers. Dyes and Pigments, 175, 108181. https://doi.org/10.1016/j.dyepig.2019.108181
  • Kashtoh, H., Hussain, S., Khan, A., Saad, S. M., Khan, J. A., Khan, K. M., Perveen, S., & Choudhary, M. I. (2014). Oxadiazoles and thiadiazoles: Novel α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry, 22(19), 5454–5465. https://doi.org/10.1016/j.bmc.2014.07.032
  • Khan, M., Yu, B., Rasul, A., Al Shawi, A., Yi, F., Yang, H., & Ma, T. (2012). Jaceosidin induces apoptosis in U87 glioblastoma cells through G2/M phase arrest. Evidence-Based Complementary and Alternative Medicine, 2012, 703034. https://doi.org/10.1155/2012/703034
  • Lapierre, J.-M., Eathiraj, S., Vensel, D., Liu, Y., Bull, C., Cornell-Kennon, S., Iimura, S., Kelleher, E., Kizer, D., Koerner, S., Makhija, S., Matsuda, A., Moussa, M., Namdev, N., Savage, R., Szwaya, J., Volckova, E., Westlund, N., Wu, H., & Schwartz, B. (2016). Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ 092): An orally bioavailable, selective, and potent allosteric AKT inhibitor. Journal of Medicinal Chemistry, 59(13), 6455–6469. https://doi.org/10.1021/acs.jmedchem.6b00619
  • Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., Li, B., & Liu, X. S. (2017). TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Research, 77(21), e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307
  • Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B., & Liu, X. S. (2020). TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 48(W1), W509–W514. https://doi.org/10.1093/nar/gkaa407
  • Lu, H., Zhang, H., & Jiang, Y. (2020). Methazolamide in high-altitude illnesses. European Journal of Pharmaceutical Sciences, 148, 105326. https://doi.org/10.1016/j.ejps.2020.105326
  • Lu, J.-W., Lin, Y.-M., Chang, J.-G., Yeh, K.-T., Chen, R.-M., Tsai, J. J., Su, W.-W., & Hu, R.-M. (2013). Clinical implications of deregulated CDK4 and cyclin D1 expression in patients with human hepatocellular carcinoma. Medical Oncology, 30(1), 379. https://doi.org/10.1007/s12032-012-0379-5
  • Mangalam, N. A., & Kurup, M. P. (2009). Synthesis and spectral investigations of vanadium(IV/V) complexes derived from an ONS donor thiosemicarbazone ligand. Spectrochimica Acta. Part A Molecular and Biomolecular Spectroscopy, 71(5), 2040–2044. https://doi.org/10.1016/j.saa.2008.07.043
  • Aly, A., Mohamed, A., & Ramadan, M. (2020). Synthesis and colon anticancer activity of some novel thiazole/-2-quinolone derivatives. Journal of Molecular Structure, 1207, 127798. https://doi.org/10.1016/j.molstruc.2020.127798
  • Mohammed, M. K., Al-Shuhaib, Z., & Al-Shawi, A. A. (2019). Synthesis, characterization and cytotoxicity appraisal of original 1, 2, 3-triazole derivatives, against breast cancer cell lines (MDA-MB-231). Mediterranean Journal of Chemistry, 9(4), 305–310. https://doi.org/10.13171/mjc941911161021mkm
  • Muğlu, H., Yakan, H., & Shouaib, H. A. (2020). New 1, 3, 4-thiadiazoles based on thiophene-2-carboxylic acid: Synthesis, characterization, and antimicrobial activities. Journal of Molecular Structure, 1203, 127470. https://doi.org/10.1016/j.molstruc.2019.127470
  • Padmaja, A., Pedamalakondaiah, D., Sravya, G., Reddy, G. M., & Kumar, M. V. J. (2015). Synthesis and antioxidant activity of a new class of sulfone/sulfonamide-linked bis (oxadiazoles), bis (thiadiazoles), and bis (triazoles). Medicinal Chemistry Research, 24(5), 2011–2020. https://doi.org/10.1007/s00044-014-1277-5
  • Pathak, N., & Khandelwal, S. (2007). Role of oxidative stress and apoptosis in cadmium induced thymic atrophy and splenomegaly in mice. Toxicology Letters, 169(2), 95–108. https://doi.org/10.1016/j.toxlet.2006.12.009
  • Pong, K. (2003). Oxidative stress in neurodegenerative diseases: Therapeutic implications for superoxide dismutase mimetics. Expert Opinion on Biological Therapy, 3(1), 127–139. https://doi.org/10.1517/14712598.3.1.127
  • Prabhakar, Y. S., Solomon, V. R., Gupta, M. K., & Katti, S. (2006). QSAR studies on thiazolidines: a biologically privileged scaffold. In QSAR and molecular modeling studies in heterocyclic drugs II (pp. 161–249). Springer.
  • Prashantha Kumar, B., Basu, P., Adhikary, L., & Nanjan, M. (2012). Efficient conversion of N-terminal of L-tyrosine, DL-phenyl alanine, and glycine to substituted 2-thioxo-thiazolidine-4-ones: a stereospecific synthesis. Synthetic Communications, 42(20), 3089–3096. https://doi.org/10.1080/00397911.2011.576322
  • Pushkarevsky, N., Lonchakov, A., Semenov, N., Lork, E., Buravov, L., Konstantinova, L., Silber, G., Robertson, N., Gritsan, N., Rakitin, O., Woollins, D., Yagubskii, E., Beckmann, J., & Zibarev, A. (2012). First charge-transfer complexes between tetrathiafulvalene and 1, 2, 5-chalcogenadiazole derivatives: Design, synthesis, crystal structures, electronic and electrical properties. Synthetic Metals, 162(24), 2267–2276. https://doi.org/10.1016/j.synthmet.2012.10.026
  • Raj, M. M., Patel, H. V., Raj, L. M., & Patel, N. K. (2013). Synthesis and biological evaluation of some new 1, 3, 4-thiadiazole derivatives for their antimicrobial activities. International Journal of Pharmaceutical, Chemical & Biological Sciences, 3, 814–819.
  • Roeges, N. P., & Baas, J. (1994). A guide to the complete interpretation of infrared spectra of organic structures. Wiley.
  • Saiz, C., Pizzo, C., Manta, E., Wipf, P., & Mahler, S. G. (2009). Microwave assisted tandem reactions for the synthesis of 2-hydrazolyl-4-thiazolidinones. Tetrahedron Letters, 50(8), 901–904. https://doi.org/10.1016/j.tetlet.2008.12.020
  • Santos, A., Wernersson, R., & Jensen, L. J. (2015). Cyclebase 3.0: A multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Research, 43(Database issue), D1140–D1144.
  • Semenov, N., Pushkarevsky, N., Suturina, E., Chulanova, E., Kuratieva, N., Bogomyakov, A., Irtegova, I., Vasilieva, N., Konstantinova, L., Gritsan, N., Rakitin, O., Ovcharenko, V., Konchenko, S., & Zibarev, A. (2013). Bis (toluene) chromium (I)[1, 2, 5] thiadiazolo [3, 4-c][1, 2, 5] thiadiazolidyl and [1, 2, 5] thiadiazolo [3, 4-b] pyrazinidyl: New heterospin (S 1 = S 2 = 1/2) radical-ion salts. Inorganic Chemistry, 52(11), 6654–6663. https://doi.org/10.1021/ic400659q
  • Slavova-Kazakova, A., Angelova, S., Veprintsev, T., Denev, P., Fabbri, D., Dettori, M. A., Kratchanova, M., Naumov, V., Trofimov, A., Vasil'ev, R., Delogu, G., & Kancheva, V. (2015). Antioxidant potential of curcumin-related compounds studied by chemiluminescence kinetics, chain-breaking efficiencies, scavenging activity (ORAC) and DFT calculations. Beilstein Journal of Organic Chemistry, 11, 1398–1411. https://doi.org/10.3762/bjoc.11.151
  • Szeliga, M. (2020). Thiadiazole derivatives as anticancer agents. Pharmacological Reports, 72, 1079–1100.
  • Tahlan, S., Kumar, S., Ramasamy, K., Lim, S. M., Shah, S. A. A., Mani, V., & Narasimhan, B. (2019). In-silico molecular design of heterocyclic benzimidazole scaffolds as prospective anticancer agents. BMC Chemistry, 13(1), 1–22. https://doi.org/10.1186/s13065-019-0608-5
  • Toan, V. N., Thanh, N. D., & Tri, N. M. (2021). 1, 3, 4-Thiadiazoline-coumarin hybrid compounds containing D-glucose/D-galactose moieties: Synthesis and evaluation of their antiproliferative activity. Arabian Journal of Chemistry, 14, 103053.
  • Trotsko, N., Bekier, A., Paneth, A., Wujec, M., & Dzitko, K. (2019). Synthesis and in vitro anti-Toxoplasma gondii activity of novel thiazolidin-4-one derivatives. Molecules, 24(17), 3029. https://doi.org/10.3390/molecules24173029
  • Wang, Y., Zhao, Y., Zhang, A., Ma, J., Wang, Z., & Zhang, X. (2017). Targeting of miR-20a against CFLAR to potentiate TRAIL-induced apoptotic sensitivity in HepG2 cells. European Review for Medical and Pharmacological Sciences, 21, 2087–2097.
  • Weis, S., Kesselmeier, M., Davis, J., Morris, A., Lee, S., Scherag, A., Hagel, S., & Pletz, M. (2019). Cefazolin versus anti-staphylococcal penicillins for the treatment of patients with Staphylococcus aureus bacteremia. Clinical Microbiology and Infection, 25(7), 818–827. https://doi.org/10.1016/j.cmi.2019.03.010
  • Wu, Q., Cai, H., Yuan, T., Li, S., Gan, X., & Song, B. (2020). Novel vanillin derivatives containing a 1, 3, 4-thiadiazole moiety as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 30(10), 127113.
  • Xia, Z.-K., Wang, W., Qiu, J.-G., Shi, X.-N., Li, H.-J., Chen, R., Ke, K.-B., Dong, C., Zhu, Y., Wu, S.-G., Zhang, R.-P., Meng, Z.-R., Zhao, H., Gu, P., Leung, K.-S., Wong, M.-H., Liu, X.-D., Zhou, F.-M., Zhang, J.-Y., … Jiang, B.-H. (2021). Discovery of a new CDK4/6 and PI3K/AKT multiple kinase inhibitor aminoquinol for the treatment of hepatocellular carcinoma. Frontiers in Pharmacology, 12, 691769. https://doi.org/10.3389/fphar.2021.691769
  • Xiao-Ming, Y. (2000). Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Research, 10, 161–167.
  • Xiao, S., Wang, X., Xu, L., Li, T., Cao, J., & Zhao, Y. (2020). Novel panaxadiol triazole derivatives induce apoptosis in HepG-2 cells through the mitochondrial pathway. Bioorganic Chemistry, 102, 104078. https://doi.org/10.1016/j.bioorg.2020.104078
  • Zhang, J., Wang, X., Yang, J., Guo, L., Wang, X., Song, B., Dong, W., & Wang, W. (2020). Novel diosgenin derivatives containing 1,3,4-oxadiazole/thiadiazole moieties as potential antitumor agents: Design, synthesis and cytotoxic evaluation. European Journal of Medicinal Chemistry, 186, 111897. https://doi.org/10.1016/j.ejmech.2019.111897
  • Zhang, Q., Bao, J., & Yang, J. (2019). Genistein-triggered anticancer activity against liver cancer cell line HepG2 involves ROS generation, mitochondrial apoptosis, G2/M cell cycle arrest and inhibition of cell migration. Archives of Medical Science, 15(4), 1001–1009. https://doi.org/10.5114/aoms.2018.78742
  • Zhao, J.-X., Yuan, Y.-W., Cai, C.-F., Shen, D.-Y., Chen, M.-L., Ye, F., Mi, Y.-J., Luo, Q.-C., Cai, W.-Y., Zhang, W., Long, Y., Zeng, Y., Ye, G.-D., & Yang, S.-Y. (2017). Aldose reductase interacts with AKT1 to augment hepatic AKT/mTOR signaling and promote hepatocarcinogenesis. Oncotarget, 8(40), 66987–67000. https://doi.org/10.18632/oncotarget.17791

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.