606
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Structure and inhibition mechanism of some synthetic compounds and phenolic derivatives as tyrosinase inhibitors: review and new insight

ORCID Icon
Pages 4798-4810 | Received 15 Feb 2022, Accepted 18 Apr 2022, Published online: 05 May 2022

References

  • Altawash, A. S., Shahneh, A. Z., Moravej, H., & Ansari, M. (2017). Chrysin-induced sperm parameters and fatty acid profile changes improve reproductive performance of roosters. Theriogenology, 104, 72–79. https://doi.org/10.1016/j.theriogenology.2017.07.022
  • Andrawis, A., & Kahn, V. (1986). Effect of methimazole on the activity of mushroom tyrosinase. The Biochemical Journal, 235(1), 91–96. https://doi.org/10.1042/bj2350091
  • Arung, E. T., Wijaya Kusuma, I., Shimizu, K., & Kondo, R. (2011). Tyrosinase inhibitory effect of quercetin 4'-O-β-D-glucopyranoside from dried skin of red onion (Allium cepa). Natural Product Research, 25(3), 256–263. https://doi.org/10.1080/14786411003754256
  • Ashraf, Z., Rafiq, M., Nadeem, H., Hassan, M., Afzal, S., Waseem, M., Afzal, K., & Latip, J. (2017). Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies. PLoS One, 12(5), e0178069. https://doi.org/10.1371/journal.pone.0178069
  • Ashraf, Z., Rafiq, M., Seo, S.-Y., Kwon, K. S., Babar, M. M., & Zaidi, N.-u.-S. S. (2015). Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. European Journal of Medicinal Chemistry, 98(2032), 203–211. https://doi.org/10.1016/j.ejmech.2015.05.031
  • Bagherzadeh, K., Shirgahi Talari, F., Sharifi, A., Ganjali, M. R., Saboury, A. A., & Amanlou, M. (2015). A new insight into mushroom tyrosinase inhibitors: Docking, pharmacophore-based virtual screening, and molecular modeling studies. Journal of Biomolecular Structure & Dynamics, 33(3), 487–501. https://doi.org/10.1080/07391102.2014.893203
  • Bao, X. R., Liao, H., Qu, J., Sun, Y., Guo, X., Wang, E. X., & Zhen, Y. H. (2016). Synthesis, characterization and cytotoxicity of alkylated quercetin derivatives. Iranian Journal of Pharmaceutical Research: IJPR, 15(3), 329–335.
  • Bassino, E., Antoniotti, S., Gasparri, F., & Munaron, L. (2016). Effects of flavonoid derivatives on human microvascular endothelial cells. Natural Product Research, 30(24), 2831–2834. https://doi.org/10.1080/14786419.2016.1154053
  • Brotzman, N., Xu, Y., Graybill, A., Cocolas, A., Ressler, A., Seeram, N. P., Ma, H., & Henry, G. E. (2019). Synthesis and tyrosinase inhibitory activities of 4-oxobutanoate derivatives of carvacrol and thymol. Bioorganic & Medicinal Chemistry Letters, 29(1), 56–58. https://doi.org/10.1016/j.bmcl.2018.11.013
  • Buitrago, E., Hardré, R., Haudecoeur, R., Jamet, H., Belle, C., Boumendjel, A., Bubacco, L., & Réglier, M. (2016). Are human tyrosinase and related proteins suitable targets for melanoma therapy? Current Topics in Medicinal Chemistry, 16(27), 3033–3047. https://doi.org/10.2174/1568026616666160216160112
  • Chai, W.-M., Huang, Q., Lin, M.-Z., Ou-Yang, C., Huang, W.-Y., Wang, Y.-X., Xu, K.-L., & Feng, H.-L. (2018). Condensed tannins from longan bark as inhibitor of Tyrosinase: Structure, activity, and mechanism. Journal of Agricultural and Food Chemistry, 66(4), 908–917. https://doi.org/10.1021/acs.jafc.7b05481
  • Chao, H. C., Najjaa, H., Villareal, M. O., Ksouri, R., Han, J., Neffati, M., & Isoda, H. (2013). Arthrophytumscoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells. Experimental Dermatology, 22(2), 131–136.
  • Chen, W. C., Tseng, T. S., Hsiao, N. W., Lin, Y. L., Wen, Z. H., Tsai, C. C., Lee, Y. C., Lin, H. H., & Tsai, K. C. (2015). Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Scientific Reports, 5(1), 7995–7998. https://doi.org/10.1038/srep07995
  • Choi, M. H., Yang, S. H., Kim, D. S., Kim, N. D., Shin, H. J., & Liu, K. (2021). Novel quercetin derivative of 3, 7-dioleylquercetin shows less toxicity and highly potent tyrosinase inhibition activity. International Journal of Molecular Sciences, 22(8), 4264. https://doi.org/10.3390/ijms22084264
  • Chu, W., Tu, Z., McElveen, E., Xu, J., Taylor, M., Luedtke, R. R., & Mach, R. H. (2005). Synthesis and in vitro binding of N-phenyl piperazine analogs as potential dopamine D3 receptor ligands. Bioorganic & Medicinal Chemistry, 13(1), 77–87. https://doi.org/10.1016/j.bmc.2004.09.054
  • Costin, G. E., & Hearing, V. J. (2007). Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB Journal, 21(4), 976–994. https://doi.org/10.1096/fj.06-6649rev
  • Dawley, R. M., & Flurkey, W. H. (1993). Differentiation of tyrosinase and laccase using 4-hexyl-3 resorcinol, a tyrosinase inhibitor. Phytochemistry, 33(2), 281–284. https://doi.org/10.1016/0031-9422(93)85503-J
  • Espín, J. C., & Wichers, H. J. (2001). Effect of captopril on mushroom tyrosinase activity in vitro. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1544(1–2), 289–300. https://doi.org/10.1016/S0167-4838(00)00230-2
  • Fan, M., Zhang, G., Hu, X., Xu, X., & Gong, D. (2017). Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Research International (Ottawa, Ont.), 100(Pt 1), 226–233. https://doi.org/10.1016/j.foodres.2017.07.010
  • Fan, Y. F., Zhu, S. X., Hou, F. B., Zhao, D. F., Pan, Q. S., Xiang, Y. W., Qian, X. K., Ge, G. B., & Wang, P. (2021). Spectrophotometric assays for sensing tyrosinase activity and their applications. Biosensors, 11(8), 290. https://doi.org/10.3390/bios11080290
  • Fernandes, M. S., & Kerkar, S. (2017). Microorganisms as a source of tyrosinase inhibitors: A review. Annals of Microbiology, 67(4), 343–358. https://doi.org/10.1007/s13213-017-1261-7
  • Hashemi, S. M., & Emami, S. (2015). Kojic acid-derived tyrosinase inhibitors: Synthesis and bioactivity. Pharmaceutical and Biomedical Research, 1(1), 1–7. https://doi.org/10.18869/acadpub.pbr.1.1.1
  • Hridya, H., Amrita, A., Sankari, M., Doss, C. G., Gopalakrishnan, M., Gopalakrishnan, C., & Siva, R. (2015). Inhibitory effect of brazilein on tyrosinase and melanin synthesis: Kinetics and in silico approach. International Journal of Biological Macromolecules, 81, 228–234. https://doi.org/10.1016/j.ijbiomac.2015.07.064
  • Hu, J. N., Zou, X. G., He, Y., Chen, F., & Deng, Z. Y. (2016). Esterification of quercetin increases its transport across human Caco-2 cells. Journal of Food Science, 81(7), H1825–32. https://doi.org/10.1111/1750-3841.13366
  • Ishioka, W., Oonuki, S., Iwadate, T., & Nihei, K. I. (2019). Resorcinol alkyl glucosides as potent tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 29(2), 313–316. https://doi.org/10.1016/j.bmcl.2018.11.029
  • Ismaya, W. T., Rozeboom, H. J., Weijn, A., Mes, J. J., Fusetti, F., Wichers, H. J., & Dijkstra, B. W. (2011). Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 50(24), 5477–5486. https://doi.org/10.1021/bi200395t
  • Iwadate, T., Kashiwakura, Y., Masuoka, N., Yamada, Y., & Nihei, K. (2014). Chemical synthesis and tyrosinase inhibitory activity of rhododendrol glycosides. Bioorganic & Medicinal Chemistry Letters, 24(1), 122–125. https://doi.org/10.1016/j.bmcl.2013.11.063
  • Jakimiuk, K., Sari, S., Milewski, R., Supuran, C. T., Şöhretoğlu, D., & Tomczyk, M. (2022). Flavonoids as tyrosinase inhibitors in in silico and in vitro models: Basic framework of SAR using a statistical modelling approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 421–430. https://doi.org/10.1080/14756366.2021.2014832
  • Jiménez, M., & García-Carmona, F. (1997). 4-Substituted resorcinols (sulfite alternatives) as slow-binding inhibitors of tyrosinase catecholase activity. Journal of Agricultural and Food Chemistry, 45(6), 2061–2065. https://doi.org/10.1021/jf960810n
  • Kahn, V., & Andrawis, A. (1985). Inhibition of mushroom tyrosinase by tropolone. Phytochemistry, 24(5), 905–908. https://doi.org/10.1016/S0031-9422(00)83150-7
  • Kato, K., Ninomiya, M., Tanaka, K., & Koketsu, M. (2016). Effects of functional groups and sugar composition of quercetin derivatives on their radical scavenging properties. Journal of Natural Products, 79(7), 1808–1814.
  • Kim, M., Park, Y., Cho, S., Burapan, S., & Han, J. (2015). Synthesis of alkyl quercetin derivatives. Journal of the Korean Society for Applied Biological Chemistry, 58(3), 343–348. https://doi.org/10.1007/s13765-015-0050-x
  • Kim, Y. J., & Uyama, H. (2005). Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cellular and Molecular Life Sciences: CMLS, 62(15), 1707–1723. https://doi.org/10.1007/s00018-005-5054-y
  • Kim, Y. M., Yun, J., Lee, C. K., Lee, H., Min, K. R., & Kim, Y. (2002). Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. The Journal of Biological Chemistry, 277(18), 16340–16344. https://doi.org/10.1074/jbc.M200678200
  • Kong, Y. H., Jo, Y. O., Cho, C. W., Son, D., Park, S., Rho, J., & Choi, S. Y. (2008). Inhibitory effects of cinnamic acid on melanin biosynthesis in skin. Biological & Pharmaceutical Bulletin, 31(5), 946–948. https://doi.org/10.1248/bpb.31.946
  • Kuo, T. C., & Ho, F. M. (2013). Competitive inhibition of mushroom tyrosinase by captopril. Research Journal of Biotechnology, 8.
  • Liu, D., Mao, Y., Ding, L., & Zeng, X. A. (2019). Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends in Food Science & Technology, 91, 586–597. https://doi.org/10.1016/j.tifs.2019.07.038
  • Masum, M. N., Yamauchi, K., & Mitsunaga, T. (2019). Tyrosinase inhibitors from natural and synthetic sources as skin-lightening agents. Reviews in Agricultural Science, 7, 41–58. https://doi.org/10.7831/ras.7.41
  • Menezes, J. C., Kamat, S. P., Cavaleiro, J. A., Gaspar, A., Garrido, J., & Borges, F. (2011). Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. European Journal of Medicinal Chemistry, 46(2), 773–777. https://doi.org/10.1016/j.ejmech.2010.12.016
  • Miliovsky, M., Svinyarov, I., Mitrev, Y., Evstatieva, Y., Nikolova, D., Chochkova, M., & Bogdanov, M. G. (2013). A novel one-pot synthesis and preliminary biological activity evaluation of cis-restricted polyhydroxy stilbenes incorporating protocatechuic acid and cinnamic acid fragments. European Journal of Medicinal Chemistry, 66, 185–192. https://doi.org/10.1016/j.ejmech.2013.05.040
  • Naghdi, B. H., Addollahi, M., Mehrafin, A., Ghorbanpour, M., Tolyat, M., Qaderi, A., & Ghiaci, Y. M. (2017). An overview of two valuable bioactive compounds, thymol and carvacrol, in medicinal plants. Journal of Medicinal Plants, 16, 1–32.
  • Noh, J. M., Kwak, S. Y., Seo, H. S., Seo, J. H., Kim, B. G., & Lee, Y. S. (2009). Kojic acid-amino acid conjugates as tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 19(19), 5586–5589. https://doi.org/10.1016/j.bmcl.2009.08.041
  • Obaid, R. J., Mughal, E. U., Naeem, N., Sadiq, A., Alsantali, R. I., Jassas, R. S., Moussa, Z., & Ahmed, S. A. (2021). Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Advances, 11(36), 22159–22198. https://doi.org/10.1039/D1RA03196A
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41
  • Panzella, L., & Napolitano, A. (2019). Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics, 6(4),1–33. https://doi.org/10.3390/cosmetics6040057
  • Peng, Z., Wang, G., Zeng, Q. H., Li, Y., Liu, H., Wang, J. J., & Zhao, Y. (2021). A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Critical Reviews in Food Science and Nutrition, 61, 1–42. https://doi.org/10.1080/10408398.2021.1871724
  • Pillaiyar, T., Manickam, M., & Jung, S. H. (2017). Recent development of signaling pathways inhibitors of melanogenesis. Cellular Signalling, 40, 99–115. https://doi.org/10.1016/j.cellsig.2017.09.004
  • Qiu, L., Chen, Q. H., Zhuang, J. X., Zhong, X., Zhou, J. J., Guo, Y. J., & Chen, Q. X. (2009). Inhibitory effects of α-cyano-4-hydroxycinnamic acid on the activity of mushroom tyrosinase. Food Chemistry, 112(3), 609–613. https://doi.org/10.1016/j.foodchem.2008.06.021
  • Rocha, D. H. A., Pinto, D. C. G. A., & Silva, A. M. S. (2018). Applications of the Wittig reaction on the synthesis of natural and natural-analogue heterocyclic compounds. European Journal of Organic Chemistry, 2018(20–21), 2443–2457. https://doi.org/10.1002/ejoc.201800523
  • Saruno, R., Kato, F., & Ikeno, T. (1979). Kojic acid, a tyrosinase inhibitor from Aspergillus albus. Agricultural and Biological Chemistry, 43(6), 1337–1338. https://doi.org/10.1271/bbb1961.43.1337
  • Satooka, H., & Kubo, I. (2011). Effects of thymol on mushroom tyrosinase-catalyzed melanin formation. Journal of Agricultural and Food Chemistry, 59(16), 8908–8914. https://doi.org/10.1021/jf2014149
  • Shi, Y., Chen, Q. X., Wang, Q., Song, K. K., & Qiu, L. (2005). Inhibitory effects of cinnamic acid and its derivatives on the diphenolase activity of mushroom (Agaricus bisporus) tyrosinase. Food Chem, 92(4), 707–712. https://doi.org/10.1016/j.foodchem.2004.08.031
  • Şöhretoğlu, D., Sari, S., Barut, B., & Özel, A. (2018). Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorganic Chemistry, 81, 168–174. https://doi.org/10.1016/j.bioorg.2018.08.020
  • Strzępek-Gomółka, M., Gaweł-Bęben, K., Angelis, A., Antosiewicz, B., Sakipova, Z., Kozhanova, K., Głowniak, K., & Kukula-Koch, W. (2021). Identification of mushroom and murine tyrosinase inhibitors from Achillea biebersteinii Afan. extract. Molecules, 26(4), 964. https://doi.org/10.3390/molecules26040964
  • Tasaka, K., Kamei, C., Nakano, S., Takeuchi, Y., & Yamato, M. (1998). Effects of certain resorcinol derivatives on the tyrosinase activity and the growth of melanoma cells. Methods and Findings in Experimental and Clinical Pharmacology, 20(2), 99–110. https://doi.org/10.1358/mf.1998.20.2.485637
  • Teles, Y. C., Souza, M. S., & Souza, M. D. (2018). Sulphated flavonoids: Biosynthesis, structures, and biological activities. Molecules, 23(2), 480. https://doi.org/10.3390/molecules23020480
  • Tepper, A. W. (2005). Structure and mechanism of the type-3 copper protein tyrosinase [Doctoral dissertation]. Leiden University.
  • Ullah, S., Son, S., Yun, H. Y., Kim, D. H., Chun, P., & Moon, H. R. (2016). Tyrosinase inhibitors: A patent review (2011–2015). Expert Opinion on Therapeutic Patents, 26(3), 347–362. https://doi.org/10.1517/13543776.2016.1146253
  • Vaezi, M., Behbehani, G. R., Gheibi, N., & Farasat, A. (2020). Thermodynamic, kinetic and docking studies of some unsaturated fatty acids-quercetin derivatives as inhibitors of mushroom tyrosinase. AIMS Biophysics, 7(4), 393–410. https://doi.org/10.3934/biophy.2020027
  • Vaezi, M. (2021). Evaluation of quercetin omega-6 and -9 esters on activity and structure of mushroom tyrosinase: Spectroscopic and molecular docking studies. Journal of Food Biochemistry, 45(11), e13953. https://doi.org/10.1111/jfbc.13953
  • Vazhappilly, C. G., Amararathna, M., Cyril, A. C., Linger, R., Matar, R., Merheb, M., Ramadan, W. S., Radhakrishnan, R., & Rupasinghe, H. V. (2021). Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. The Journal of Nutritional Biochemistry, 94, 108623. https://doi.org/10.1016/j.jnutbio.2021.108623
  • Xie, L. P., Chen, Q. X., Huang, H., Liu, X. D., Chen, H. T., & Zhang, R. Q. (2003). Inhibitory effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase. The International Journal of Biochemistry & Cell Biology, 35(12), 1658–1666. https://doi.org/10.1016/S1357-2725(03)00006-2
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309. https://doi.org/10.1080/14756366.2018.1545767

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.