137
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Impact of compound mutations I1171N + F1174I and I1171N + L1198H on the structure of ALK in NSCLC pathogenesis: atomistic insights

, ORCID Icon & ORCID Icon
Pages 4735-4743 | Received 09 Dec 2021, Accepted 26 Apr 2022, Published online: 05 May 2022

References

  • Abdullahi, M., Olotu, F. A., & Soliman, M. E. (2018). Allosteric inhibition abrogates dysregulated LFA-1 activation: Structural insight into mechanisms of diminished immunologic disease. Computational Biology and Chemistry, 73, 49–56. https://doi.org/10.1016/j.compbiolchem.2018.02.002
  • Agoni, C., Salifu, E. Y., Munsamy, G., Olotu, F. A., & Soliman, M. (2019). CF < inf > 3</inf>-pyridinyl substitution on antimalarial therapeutics: probing differential ligand binding and dynamical inhibitory effects of a novel triazolopyrimidine-based inhibitor on plasmodium falciparum dihydroorotate dehydrogenase. Chemistry & Biodiversity, 16(2), e1900365. https://doi.org/10.1002/cbdv.201900365
  • Awad, M. M. (2013). Acquired resistance to crizotinib from a mutation in CD74 – ROS1. The New England Journal of Medicine, 368(25), 2395-2401. https://doi.org/10.1056/nejmoa1215530
  • Caravella, J. A., Lin, J., Diebold, R. B., Campbell, A.-M., Ericsson, A., Gustafson, G., Wang, Z., Castro, J., Clarke, A., Gotur, D., Josephine, H. R., Katz, M., Kershaw, M., Yao, L., Toms, A. V., Barr, K. J., Dinsmore, C. J., Walker, D., Ashwell, S., & Lu, W. (2020). Structure-based design and identification of FT-2102 (Olutasidenib), a potent mutant-selective IDH1 inhibitor. Journal of Medicinal Chemistry, 63(4), 1612–1623. https://doi.org/10.1021/acs.jmedchem.9b01423
  • Choi, Y. L. (2010). EML4-ALK Mutations in lung cancer that confer resistance to ALK inhibitors. The New England Journal of Medicine, 363(18), 1734-1739. https://doi.org/10.1056/nejmoa1007478
  • Dagogo-Jack, I. (2019). Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clinical Cancer Research, 25(22), 6662–6670. https://doi.org/10.1158/1078-0432.CCR-19-1436
  • Doebele, R. C. (2012). Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clinical Cancer Research, 18(5), 1472–1482. https://doi.org/10.1158/1078-0432.CCR-11-2906
  • Fujita, S., Masago, K., Katakami, N., & Yatabe, Y. (2016). Transformation to SCLC after treatment with the ALK inhibitor alectinib. Journal of Thoracic Oncology, 11(6), e67-e72. https://doi.org/10.1016/j.jtho.2015.12.105
  • Gainor, J. F., Dardaei, L., Yoda, S., Friboulet, L., Leshchiner, I., Katayama, R., Dagogo-Jack, I., Gadgeel, S., Schultz, K., Singh, M., Chin, E., Parks, M., Lee, D., DiCecca, R. H., Lockerman, E., Huynh, T., Logan, J., Ritterhouse, L. L., Le, L. P., … Shaw, A. T. (2016). Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK -rearranged lung cancer. Cancer Discovery, 6(10), 1118–1133. https://doi.org/10.1158/2159-8290.CD-16-0596
  • Ganesan, A., Coote, M. L., & Barakat, K. (2017). Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discovery Today, 22(2), 249–269. https://doi.org/10.1016/j.drudis.2016.11.001
  • Guan, J., Yamazaki, Y., Chand, D., van Dijk, J., Ruuth, K., Palmer, R., & Hallberg, B. (2017). Novel mechanisms of ALK activation revealed by analysis of the Y1278S neuroblastoma mutation. Cancers (Basel), 9(12), 149. https://doi.org/10.3390/cancers9110149
  • Hallberg, B., & Palmer, R. H. (2013). Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nature Reviews Cancer, 13(10), 685–700. https://doi.org/10.1038/nrc3580
  • Hrustanovic, G., Olivas, V., Pazarentzos, E., Tulpule, A., Asthana, S., Blakely, C. M., Okimoto, R. A., Lin, L., Neel, D. S., Sabnis, A., Flanagan, J., Chan, E., Varella-Garcia, M., Aisner, D. L., Vaishnavi, A., Ou, S.-H I., Collisson, E. A., Ichihara, E., Mack, P. C., … Bivona, T. G. (2015). RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nature Medicine, 21(9), 1038–1047. doi: 10.1038/nm.3930.
  • Hu, G., Yan, W., Zhou, J., & Shen, B. (2014). Residue interaction network analysis of Dronpa and a DNA clamp. Journal of Theoretical Biology, 348, 55–64. https://doi.org/10.1016/j.jtbi.2014.01.023
  • Huang, H. (2018). Anaplastic lymphoma kinase (Alk) receptor tyrosine kinase: A catalytic receptor with many faces. International Journal of Molecular Sciences, 19(11), 3448. https://doi.org/10.3390/ijms1911
  • Katayama, R., Shaw, A. T., Khan, T. M., Mino-Kenudson, M., Solomon, B. J., Halmos, B., Jessop, N. A., Wain, J. C., Yeo, A. T., Benes, C., Drew, L., Saeh, J. C., Crosby, K., Sequist, L. V., Iafrate, A. J., & Engelman, J. A. (2012). Cancer: Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Science Translational Medicine, 4(120), 120ra17. https://doi.org/10.1126/scitranslmed.3003316
  • Leonetti, A., & Tiseo, M. (2021). Systemic treatments other than TKI: Reflections on chemotherapy, immunotherapy and antiangiogenic agents in ALK-driven NSCLC. In Therapeutic strategies to overcome ALK resistance in Cancer.
  • Munsamy, G., Agoni, C., & Soliman, M. E. S. (2018). A dual target of Plasmepsin IX and X: Unveiling the atomistic superiority of a core chemical scaffold in malaria therapy. Journal of Cell Biology, 120(5), 1–12. https://doi.org/10.1002/jcb.28062
  • Okada, K., Araki, M., Sakashita, T., Ma, B., Kanada, R., Yanagitani, N., Horiike, A., Koike, S., Oh-hara, T., Watanabe, K., Tamai, K., Maemondo, M., Nishio, M., Ishikawa, T., Okuno, Y., Fujita, N., & Katayama, R. (2019). Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine, 41, 105–119. 2019, https://doi.org/10.1016/j.ebiom.2019.01.019
  • Pailler, E. (2019). Acquired resistance mutations to ALK inhibitors identified by single circulating tumor cell sequencing in ALK-rearranged non–small-cell lung cancer. Clinical Cancer Research, 25(22), 6671–6682. https://doi.org/10.1158/1078-0432.CCR-19-1176
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Raabe, G. (2017). Molecular simulation studies on thermophysical properties.
  • Recondo, G. (2020). Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clinical Cancer Research, 26(1), 242–255. https://doi.org/10.1158/1078-0432.CCR-19-1104
  • Rolta, R., Yadav, R., Salaria, D., Trivedi, S., Imran, M., Sourirajan, A., Baumler, D. J., & Dev, K. (2021). In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly. Journal of Biomolecular Structure & Dynamics, 39(18), 7017–7034. https://doi.org/10.1080/07391102.2020.1804457
  • Salaria, D., Rolta, R., Patel, C. N., Dev, K., Sourirajan, A., & Kumar, V. (2021). In vitro and in silico analysis of Thymus serpyllum essential oil as bioactivity enhancer of antibacterial and antifungal agents. Journal of Biomolecular Structure and Dynamics, 1–20. 0 https://doi.org/10.1080/07391102.2021.1943530
  • Salifu, E. Y., Agoni, C., Olotu, F. A., & Soliman, M. E. S. (2020). Triple mycobacterial ATP-synthase mutations impedes Bedaquiline binding: Atomistic and structural perspectives. Computational Biology and Chemistry, 85, 107204. https://doi.org/10.1016/j.compbiolchem.2020.107204.
  • Salifu, E. Y., Agoni, C., Olotu, F. A., Dokurugu, Y. M., & Soliman, M. E. S. (2019). Halting ionic shuttle to disrupt the synthetic machinery—Structural and molecular insights into the inhibitory roles of Bedaquiline towards Mycobacterium tuberculosis ATP synthase in the treatment of tuberculosis. Journal of Cellular Biochemistry, 120(9), 16108-16119. https://doi.org/10.1002/jcb.28891
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Grand, S. L., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Shaw, A. T. (2017). Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. The Lancet Oncology, 18(12), 1590-1599. https://doi.org/10.1016/S1470-2045(17)30680-0
  • Shaw, A. T., & Engelman, J. A. (2013). ALK in lung cancer: Past, present, and future. Journal of Clinical Oncology, 31(8), 1105–1111. https://doi.org/10.1200/JCO.2012.44.5353
  • Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., Fujiwara, S-i., Watanabe, H., Kurashina, K., Hatanaka, H., Bando, M., Ohno, S., Ishikawa, Y., Aburatani, H., Niki, T., Sohara, Y., Sugiyama, Y., & Mano, H. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566. https://doi.org/10.1038/nature05945
  • Solomon, B. J. (2018). Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. The Lancet Oncology, 19(12), 1654-1667. https://doi.org/10.1016/S1470-2045(18)30649-1
  • Teilum, K., Olsen, J. G., & Kragelund, B. B. (2011). Protein stability, flexibility and function. Biochimica et Biophysica Acta - Proteins and Proteomics, 1814(8), 969-976. https://doi.org/10.1016/j.bbapap.2010.11.005
  • White, S. H., & Wimley, W. C. (1999). Membrane protein folding and stability: Physical principles. Annual Review of Biophysics and Biomolecular Structure, 28(1), 319–365. https://doi.org/10.1146/annurev.biophys.28.1
  • Xue, W., Jin, X., Ning, L., Wang, M., Liu, H., & Yao, X. (2013). Exploring the molecular mechanism of cross-resistance to HIV-1 integrase strand transfer inhibitors by molecular dynamics simulation and residue interaction network analysis . Journal of Chemical Information and Modeling, 53(1), 210–222. https://doi.org/10.1021/ci300541c
  • Yamada, T. (2012). Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clinical Cancer Research, 18(13), 3592–3602. https://doi.org/10.1158/1078-0432.CCR-11-2972
  • Yoda, S., Lin, J. J., Lawrence, M. S., Burke, B. J., Friboulet, L., Langenbucher, A., Dardaei, L., Prutisto-Chang, K., Dagogo-Jack, I., Timofeevski, S., Hubbeling, H., Gainor, J. F., Ferris, L. A., Riley, A. K., Kattermann, K. E., Timonina, D., Heist, R. S., Iafrate, A. J., Benes, C. H., … Shaw, A. T. (2018). Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discovery, 8(6), 714–729. https://doi.org/10.1158/2159-8290.CD-17-1256
  • Yun, M. R., Lim, S. M., Kim, S.-K., Choi, H. M., Pyo, K.-H., Kim, S. K., Lee, J. M., Lee, Y. W., Choi, J. W., Kim, H. R., Hong, M. H., Haam, K., Huh, N., Kim, J.-H., Kim, Y. S., Shim, H. S., Soo, R. A., Shih, J.-Y., Yang, J. C.-H., Kim, M., & Cho, B. C. (2018). Enhancer remodeling and MicroRNA alterations are associated with acquired resistance to ALK inhibitors. Cancer Research, 78(12), 3350–3362. https://doi.org/10.1158/0008-5472.CAN-17-3146
  • Zou, H. Y., Friboulet, L., Kodack, D. P., Engstrom, L. D., Li, Q., West, M., Tang, R. W., Wang, H., Tsaparikos, K., Wang, J., Timofeevski, S., Katayama, R., Dinh, D. M., Lam, H., Lam, J. L., Yamazaki, S., Hu, W., Patel, B., Bezwada, D., … Smeal, T. (2015). PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell, 28(1), 70–81. https://doi.org/10.1016/j.ccell.2015.05.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.