291
Views
1
CrossRef citations to date
0
Altmetric
Research Article

25 (S)-Hydroxycholesterol acts as a possible dual enzymatic inhibitor of SARS-CoV-2 Mpro and RdRp–: an insight from molecular docking and dynamics simulation approaches

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 4744-4755 | Received 18 Dec 2021, Accepted 26 Apr 2022, Published online: 05 May 2022

References

  • Ahammad, F., Abd Rashid, T., Mohamed, M., Tanbin, S., & Fuad, F. (2019). Contemporary strategies and current trends in designing antiviral drugs against dengue fever via targeting host-based approaches. Microorganisms, 7(9), 296. https://doi.org/10.3390/microorganisms7090296
  • Ahammad, F., Alam, R., Mahmud, R., Akhter, S., Talukder, E. K., Tonmoy, A. M., Fahim, S., Al-Ghamdi, K., Samad, A., & Qadri, I. (2021). Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein. Briefings in Bioinformatics, 22(5), 1–15. https://doi.org/10.1093/bib/bbab098
  • Ahammad, F., & Fuad, F. A. A. (2020). The in silico identification of potent natural bioactive anti-dengue agents by targeting the human hexokinase 2 enzyme. In Proceedings of 5th International Electronic Conference on Medicinal Chemistry, 6342. https://doi.org/10.3390/ecmc2019-06342
  • Alam, R., Rahman Imon, R., Enamul, M., Talukder, K., Akhter, S., Hossain, M. A., Ahammad, F., & Rahman, M. M. (2021). GC-MS analysis of phytoconstituents from Ruellia prostrata and Senna tora and identification of potential anti-viral activity against SARS-CoV-2. RSC Advances, 11(63), 40120–40135. https://doi.org/10.1039/D1RA06842C
  • Aljahdali, M. O., Molla, M. H. R., & Ahammad, F. (2021). Compounds identified from marine mangrove plant (Avicennia alba) as potential antiviral drug candidates against WDSV, an in-silico approach. Marine Drugs, 19(5), 253. https://doi.org/10.3390/md19050253
  • Alzahrani, F. A., Mohammed, M. R. S., Alkarim, S., Azhar, E. I., El-Magd, M. A., Hawsawi, Y., Abdulaal, W. H., Yusuf, A., Alhatmi, A., Albiheyri, R., Fakhurji, B., Kurdi, B., Madani, T. A., Alguridi, H., Alosaimi, R. S., & Khan, M. I. (2021). Untargeted metabolic profiling of extracellular vesicles of sars-cov-2-infected patients shows presence of potent anti-inflammatory metabolites. International Journal of Molecular Sciences, 22(19), 10467. https://doi.org/10.3390/ijms221910467
  • Bhuiyan, M. A., Quayum, S. T., Ahammad, F., Alam, R., Samad, A., & Nain, Z. (2020). Discovery of potential immune epitopes and peptide vaccine design – A prophylactic strategy against Rift Valley fever virus. F1000Research, 9, 999. https://doi.org/10.12688/f1000research.24975.1
  • Bouback, T. A., Pokhrel, S., Albeshri, A., Aljohani, A. M., Samad, A., Alam, R., Hossen, M. S., Al-Ghamdi, K., Talukder, M. E. K., Ahammad, F., Qadri, I., & Simal-Gandara, J. (2021). Pharmacophore-based virtual screening, quantum mechanics calculations, and molecular dynamics simulation approaches identified potential natural antiviral drug candidates against MERS-CoV S1-NTD. Molecules, 26(16), 4961. https://doi.org/10.3390/molecules26164961
  • Cagno, V., Civra, A., Rossin, D., Calfapietra, S., Caccia, C., Leoni, V., Dorma, N., Biasi, F., Poli, G., & Lembo, D. (2017). Inhibition of herpes simplex-1 virus replication by 25-hydroxycholesterol and 27-hydroxycholesterol. Redox Biology, 12, 522–527. https://doi.org/10.1016/j.redox.2017.03.016
  • Civra, A., Cagno, V., Donalisio, M., Biasi, F., Leonarduzzi, G., Poli, G., & Lembo, D. (2014). Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Scientific Reports, 4(1), 7487–7486. https://doi.org/10.1038/srep07487
  • Costanzo, M., De Giglio, M. A. R., & Roviello, G. N. (2020). SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, Darunavir/Umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Current Medicinal Chemistry, 27(27), 4536–4541. https://doi.org/10.2174/0929867327666200416131117
  • Du Toit, A. (2020). Coronavirus replication factories. Nature Reviews. Microbiology, 18(8), 411. https://doi.org/10.1038/s41579-020-0406-z
  • Eastman, R. T., Roth, J. S., Brimacombe, K. R., Simeonov, A., Shen, M., Patnaik, S., & Hall, M. D. (2020). Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Central Science, 6(5), 672–683. https://doi.org/10.1021/acscentsci.0c00489
  • Gajjar, N. D., Dhameliya, T. M., & Shah, G. B. (2021). In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. Journal of Molecular Structure, 1239, 130488. https://doi.org/10.1016/j.molstruc.2021.130488
  • Hussain, I., Hussain, A., Alajmi, M. F., Rehman, M. T., & Amir, S. (2021). Impact of repurposed drugs on the symptomatic COVID-19 patients. Journal of Infection and Public Health, 14(1), 24–38. https://doi.org/10.1016/j.jiph.2020.11.009
  • Islam, M. A., Zilani, M. N. H., Biswas, P., Khan, D. A., Rahman, M. H., Nahid, R., Nahar, N., Samad, A., Ahammad, F., & Hasan, M. N. (2022). Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme. Journal of Ethnopharmacology, 285, 114900. https://doi.org/10.1016/j.jep.2021.114900
  • Li, C., Deng, Y.-Q., Wang, S., Ma, F., Aliyari, R., Huang, X.-Y., Zhang, N.-N., Watanabe, M., Dong, H.-L., Liu, P., Li, X.-F., Ye, Q., Tian, M., Hong, S., Fan, J., Zhao, H., Li, L., Vishlaghi, N., Buth, J. E., … Cheng, G. (2017). 25-Hydroxycholesterol protects host against zika virus infection and its associated microcephaly in a mouse model. Immunity, 46(3), 446–456. https://doi.org/10.1016/j.immuni.2017.02.012
  • Luchetti, F., Crinelli, R., Cesarini, E., Canonico, B., Guidi, L., Zerbinati, C., Di Sario, G., Zamai, L., Magnani, M., Papa, S., & Iuliano, L. (2017). Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biology, 13, 581–587. https://doi.org/10.1016/j.redox.2017.07.014
  • Marcello, A., Civra, A., Milan Bonotto, R., Nascimento Alves, L., Rajasekharan, S., Giacobone, C., Caccia, C., Cavalli, R., Adami, M., Brambilla, P., Lembo, D., Poli, G., & Leoni, V. (2020). The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. Redox Biology, 36, 101682. https://doi.org/10.1016/j.redox.2020.101682
  • McDonald, J. G., & Russell, D. W. (2010). Editorial: 25-Hydroxycholesterol: A new life in immunology. Journal of Leukocyte Biology, 88(6), 1071–1072. https://doi.org/10.1189/jlb.0710418
  • Mengist, H. M., Dilnessa, T., & Jin, T. (2021). structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry, 9, 622898. https://doi.org/10.3389/FCHEM.2021.622898/BIBTEX
  • Ning, S., Yu, B., Wang, Y., & Wang, F. (2021). SARS-CoV-2: Origin, evolution, and targeting inhibition. Frontiers in Cellular and Infection Microbiology, 11, 676451. https://doi.org/10.3389/FCIMB.2021.676451/BIBTEX
  • Ohashi, H., Wang, F., Stappenbeck, F., Tsuchimoto, K., Kobayashi, C., Saso, W., Kataoka, M., Yamasaki, M., Kuramochi, K., Muramatsu, M., Suzuki, T., Sureau, C., Takeda, M., Wakita, T., Parhami, F., & Watashi, K. (2021). Identification of anti-severe acute respiratory syndrome-related coronavirus 2 (SARS-COV-2) oxysterol derivatives in vitro. International Journal of Molecular Sciences, 22(6), 3163–3114. https://doi.org/10.3390/ijms22063163
  • Opo, F. A. D. M., Rahman, M. M., Ahammad, F., Ahmed, I., Bhuiyan, M. A., & Asiri, A. M. (2021). Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific Reports, 11(1), 1–17. 1https://doi.org/10.1038/s41598-021-83626-x
  • Othman Aljahdali, M., Habibur Rahman Molla, M., & Ahammad, F. (2022). Immunoinformatics and computer-aided drug design as new approaches against emerging and re-emerging infectious diseases. In Antiviral drugs [Working Title]. IntechOpen. https://doi.org/10.5772/intechopen.101367
  • Pokhrel, S., Bouback, T. A., Samad, A., Nur, S. M., Alam, R., Abdullah-Al-Mamun, M., Nain, Z., Imon, R. R., Talukder, M. E. K., Tareq, M. M. I., Hossen, M. S., Karpiński, T. M., Ahammad, F., Qadri, I., & Rahman, M. S. (2021). Spike protein recognizer receptor ACE2 targeted identification of potential natural antiviral drug candidates against SARS-CoV-2. International Journal of Biological Macromolecules, 191, 1114–1125. https://doi.org/10.1016/j.ijbiomac.2021.09.146
  • Rahman, S. M. M., Atikullah, M., Islam, M. N. S., Mohaimenul, M., Ahammad, F., Islam, M. N. S., Saha, B., & Rahman, M. H. (2019). Anti-inflammatory, antinociceptive and antidiarrhoeal activities of methanol and ethyl acetate extract of Hemigraphis alternata leaves in mice. Clinical Phytoscience, 5(1), 16. https://doi.org/10.1186/s40816-019-0110-6
  • Rout, J., Swain, B. C., & Tripathy, U. (2020). In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2. https://doi.org/10.1080/07391102.2020.1819879
  • Samad, A., Ahammad, F., Nain, Z., Alam, R., Imon, R. R., Hasan, M., & Rahman, M. S. (2020). Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. 1–17. https://doi.org/10.1080/07391102.2020.1792347
  • Samad, A., Haque, F., Nain, Z., Alam, R., Al Noman, M. A., Rahman Molla, M. H., Hossen, M. S., Islam, M. R., Khan, M. I., & Ahammad, F. (2020). Computational assessment of MCM2 transcriptional expression and identification of the prognostic biomarker for human breast cancer. Heliyon, 6(10), e05087. https://doi.org/10.1016/j.heliyon.2020.e05087
  • Tobyn, G., Denham, A., & Whitelegg, M. (2011). Ruta graveolens, rue. Medical Herbs, 283–295. https://doi.org/10.1016/B978-0-443-10344-5.00032-X
  • Winder, C., Azzi, R., & Wagner, D. (2005). The development of the globally harmonized system (GHS) of classification and labelling of hazardous chemicals. Journal of Hazardous Materials, 125(1–3), 29–44. https://doi.org/10.1016/j.jhazmat.2005.05.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.