320
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational assessment of Withania somnifera phytomolecules as putative inhibitors of Mycobacterium tuberculosis CTP synthase PyrG

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4903-4916 | Received 30 Nov 2021, Accepted 30 Apr 2022, Published online: 12 May 2022

References

  • Adaikkappan, P., Kannapiran, M., & Anthonisamy, A. (2012). Anti-mycobacterial activity of Withania somnifera and Pueraria tuberosa against Mycobacterium tuberculosis H 37 Rv. Journal of Academia and Industrial Research, 1(September), 153–156.
  • Amadei, A., Linssen, A. B., de Groot, B. L., van Aalten, D. M., & Berendsen, H. J. (1996). An efficient method for sampling the essential subspace of proteins. Journal of Biomolecular Structure & Dynamics, 13(4), 615–625. https://doi.org/10.1080/07391102.1996.10508874
  • Andersen, P., & Scriba, T. J. (2019). Moving tuberculosis vaccines from theory to practice. Nature Reviews. Immunology, 19(9), 550–562. https://doi.org/10.1038/s41577-019-0174-z
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382
  • Bharadwaj, S., Lee, K. E., Dwivedi, V. D., Yadava, U., & Kang, S. G. (2019). Computational aided mechanistic understanding of Camellia sinensis bioactive compounds against co-chaperone p23 as potential anticancer agent. Journal of Cellular Biochemistry, 120(11), 19064–19075. https://doi.org/10.1002/jcb.29229
  • Bharadwaj, S., Lee, K. E., Dwivedi, V. D., Yadava, U., Nees, M., & Kang, S. G. (2020). Density functional theory and molecular dynamics simulation support Ganoderma lucidum triterpenoids as broad range antagonist of matrix metalloproteinases. Journal of Molecular Liquids, 311, 113322. https://doi.org/10.1016/j.molliq.2020.113322
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). 04090217.Pdf. November
  • Chiarelli, L. R., Mori, G., Orena, B. S., Esposito, M., Lane, T., de Jesus Lopes Ribeiro, A. L., Degiacomi, G., Zemanová, J., Szádocka, S., Huszár, S., Palčeková, Z., Manfredi, M., Gosetti, F., Lelièvre, J., Ballell, L., Kazakova, E., Makarov, V., Marengo, E., Mikusova, K., … Pasca, M. R. (2018). A multitarget approach to drug discovery inhibiting Mycobacterium tuberculosis PyrG and PanK. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-21614-4
  • Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., … Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537–544. https://doi.org/10.1038/31159
  • Dar, P. A., Singh, L. R., Kamal, M. A., & Dar, T. A. (2016). Unique medicinal properties of Withania somnifera: Phytochemical constituents and protein component. Current Pharmaceutical Design, 22(5), 535–540. https://doi.org/10.2174/1381612822666151125001751
  • Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry, 10, S1193–S1199. https://doi.org/10.1016/j.arabjc.2013.02.015
  • Dhawan, M., Parmar, M., Sharun, K., Tiwari, R., Bilal, M., & Dhama, K. (2021). Medicinal and therapeutic potential of withanolides from Withania somnifera against COVID-19. Journal of Applied Pharmaceutical Science, 11(4), 006–013. https://doi.org/10.7324/JAPS.2021.110402
  • Dwivedi, V. D., Bharadwaj, S., Afroz, S., Khan, N., Ansari, M. A., Yadava, U., Tripathi, R. C., Tripathi, I. P., Mishra, S. K., & Kang, S. G. (2021). Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. Journal of Biomolecular Structure & Dynamics, 39(4), 1417–1430. https://doi.org/10.1080/07391102.2020.1734485
  • Dwivedi, V. D., Singh, A., El-Kafraway, S. A., Alandijany, T. A., Faizo, A. A., Bajrai, L. H., Kamal, M. A., & Azhar, E. I. (2021). Mechanistic insights into the Japanese encephalitis virus RNA dependent RNA polymerase protein inhibition by bioflavonoids from Azadirachta indica. Scientific Reports, 11(1), 18125. https://doi.org/10.1038/s41598-021-96917-0
  • Dwivedi, V. D., Arya, A., Sharma, T., Sharma, S., Patil, S. A., & Gupta, V. K. (2020). Computational investigation of phytomolecules as resuscitation-promoting factor B (RpfB) inhibitors for clinical suppression of Mycobacterium tuberculosis dormancy reactivation. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 83, 104356. https://doi.org/10.1016/j.meegid.2020.104356
  • Ejalonibu, M. A., Elrashedy, A. A., Lawal, M. M., Kumalo, H. M., & Mhlongo, N. N. (2022). Probing the dual inhibitory mechanisms of novel thiophenecarboxamide derivatives against Mycobacterium tuberculosis PyrG and PanK: An insight from biomolecular modeling study. Journal of Biomolecular Structure and Dynamics, 40(7), 2913–2978. https://doi.org/10.1080/07391102.2020.1844055
  • Ejalonibu, M. A., Elrashedy, A. A., Lawal, M. M., Soliman, M. E., Sosibo, S. C., Kumalo, H. M., & Mhlongo, N. N. (2020). Dual targeting approach for Mycobacterium tuberculosis drug discovery: insights from DFT calculations and molecular dynamics simulations. Structural Chemistry, 31(2), 557–571. https://doi.org/10.1007/s11224-019-01422-w
  • Ferreira, L. L. G., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein - ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6-7), 591–604. https://doi.org/10.1007/s10822-010-9349-1
  • Gupta, R., Thakur, B., Singh, P., Singh, H. B., Sharma, V. D., Katoch, V. M., & Chauhan, S. V. S. (2010). Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian Journal of Medical Research, 131(6), 809–813.
  • Gupta, V. K., Kaushik, A., Chauhan, D. S., Ahirwar, R. K., Sharma, S., & Bisht, D. (2018). Anti-mycobacterial activity of some medicinal plants used traditionally by tribes from Madhya Pradesh, India for treating tuberculosis related symptoms. Journal of Ethnopharmacology, 227, 113–120. https://doi.org/10.1016/j.jep.2018.08.031
  • Haider, S., Parkinson, G. N., & Neidle, S. (2008). Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophysical Journal, 95(1), 296–311. https://doi.org/10.1529/biophysj.107.120501
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Labbé, C. M., Rey, J., Lagorce, D., Vavruša, M., Becot, J., Sperandio, O., Villoutreix, B. O., Tufféry, P., & Miteva, M. A. (2015). MTiOpenScreen: A web server for structure-based virtual screening. Nucleic Acids Research, 43(W1), W448–W454. https://doi.org/10.1093/nar/gkv306
  • Lever, J., Krzywinski, M., & Altman, N. (2017). Principal component analysis. Nature Methods, 14(7), 641–642. https://doi.org/10.1038/nmeth.4346
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Mena-Ulecia, K., Tiznado, W., & Caballero, J. (2015). Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM-GBSA. PLoS One, 10(11), e0142774. https://doi.org/10.1371/journal.pone.0142774
  • Mori, G., Chiarelli, L. R., Esposito, M., Makarov, V., Bellinzoni, M., Hartkoorn, R. C., Degiacomi, G., Boldrin, F., Ekins, S., de Jesus Lopes Ribeiro, A. L., Marino, L. B., Centárová, I., Svetlíková, Z., Blaško, J., Kazakova, E., Lepioshkin, A., Barilone, N., Zanoni, G., Porta, A., Fondi, M., & Pasca, M. R. (2015). Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG. Chemistry & biology, 22(7), 917–927. https://doi.org/10.1016/j.chembiol.2015.05.016
  • Oloya, B., Namukobe, J., Ssengooba, W., Afayoa, M., & Byamukama, R. (2022). Phytochemical screening, antimycobacterial activity and acute toxicity of crude extracts of selected medicinal plant species used locally in the treatment of tuberculosis in Uganda. Tropical Medicine and Health, 50(1), 16. https://doi.org/10.1186/s41182-022-00406-7
  • Palomino, J. C., & Martin, A. (2014). Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel, Switzerland), 3(3), 317–340. https://doi.org/10.3390/antibiotics3030317
  • Rasool, M., & Varalakshmi, P. (2006). Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vascular Pharmacology, 44(6), 406–410. https://doi.org/10.1016/j.vph.2006.01.015
  • Rodríguez, Y. A., Gutiérrez, M., Ramírez, D., Alzate-Morales, J., Bernal, C. C., Güiza, F. M., & Romero Bohórquez, A. R. (2016). Novel N-allyl/propargyl tetrahydroquinolines: Synthesis via Three-component Cationic Imino Diels-Alder Reaction, Binding Prediction, and Evaluation as Cholinesterase Inhibitors. Chemical biology & drug design, 88(4), 498–510. https://doi.org/10.1111/cbdd.12773
  • Sadowski, J., Gasteiger, J., & Klebe, G. (1993). Comparison of automatic three-dimensional model builders using 639 X-ray structures. Journal of Chemical Information and Computer Sciences, 33(4), 1000–1008.
  • Shrivastava, J. P., & Shrivastava, A. (2021). Scenario of Tuberculosis in India. J Lung Pulm Respir Res., 8(2), 24–25. https://doi.org/10.15406/jlprr.2021.08.00246
  • Singh, R., Dwivedi, S. P., Gaharwar, U. S., Meena, R., Rajamani, P., & Prasad, T. (2020). Recent updates on drug resistance in Mycobacterium tuberculosis. Journal of Applied Microbiology, 128(6), 1547–1567. https://doi.org/10.1111/jam.14478
  • Sivakumar, A., & Jayaraman, G. (2011). Anti-tuberculosis activity of commonly used medicinal plants of south India. Journal of Medicinal Plant Research, 5(31), 6881–6884. https://doi.org/10.5897/JMPR11.1397
  • Tiwari, A., Kumar, A., Srivastava, G., Sharma, A. (2019). Screening of anti-mycobacterial phytochemical compounds for potential screening of anti-mycobacterial phytochemical compounds for potential inhibitors against Mycobacterium tuberculosis isocitrate lyase. Current topics in medicinal chemistry, 19(8), 600–608. https://doi.org/10.2174/1568026619666190304125603
  • Trott, O., & Olson, A. J. (2009). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. https://doi.org/10.1002/jcc
  • Verma, S., Patel, C. N., & Chandra, M. (2021). Identification of novel inhibitors of SARS-CoV-2 main protease (Mpro) from Withania sp. by molecular docking and molecular dynamics simulation. Journal of computational chemistry, 42(26), 1861–1872. https://doi.org/10.1002/jcc.26717
  • World Health Organization (WHO) (2020). Global Tuberculosis Report. Global Tuberculosis Programme.
  • World Health Organization (WHO) (2021). Global Tuberculosis Report. Global Tuberculosis Programme.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.