307
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

In-silico validation of novel therapeutic activities of withaferin a using molecular docking and dynamics studies

& ORCID Icon
Pages 5045-5056 | Received 15 Oct 2021, Accepted 11 May 2022, Published online: 24 May 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aggarwal, B. B., Ichikawa, H., Garodia, P., Weerasinghe, P., Sethi, G., Bhatt, I. D., Pandey, M. K., Shishodia, S., & Nair, M. G. (2006). From traditional Ayurvedic medicine to modern medicine: Identification of therapeutic targets for suppression of inflammation and cancer. Expert Opinion on Therapeutic Targets, 10(1), 87–118. https://doi.org/10.1517/14728222.10.1.87
  • Andrade, E. F., Lobato, R. V., De Araújo, T. V., Zangerônimo, M. G., De Sousa, R. V., & Pereira, L. J. (2015). Efecto de los beta-glucanos en el control de los niveles de glucosa en pacientes diabéticos: revisión sistemática. Nutricion Hospitalaria, 31(1), 170–177. https://doi.org/10.3305/nh.2015.31.1.7597
  • Angelica, M. D., & Fong, Y. (2008). Molecular mechanisms of Nrf2-mediated antioxidant response wenge. Journal of Molecular Biology, 141(4), 520–529. 10.1002/mc.20465.Molecular
  • Bhardwaj, V. K., & Purohit, R. (2020). A new insight into protein-protein interactions and the effect of conformational alterations in PCNA. International Journal of Biological Macromolecules, 148, 999–1009. https://doi.org/10.1016/j.ijbiomac.2020.01.212
  • Bhattacharya, S. K., & Muruganandam, A. V. (2003). Adaptogenic activity of Withania somnifera: An experimental study using a rat model of chronic stress. Pharmacology, Biochemistry, and Behavior, 75(3), 547–555. https://doi.org/10.1016/S0091-3057(03)00110-2
  • Bikadi, Z., & Hazai, E. (2009). Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Journal of Cheminformatics, 1(1), 15–16. https://doi.org/10.1186/1758-2946-1-15
  • Brooijmans, N., & Kuntz, I. D. (2003). Molecular recognition and docking algorithms. Annual Review of Biophysics and Biomolecular Structure, 32, 335–373. https://doi.org/10.1146/annurev.biophys.32.110601.142532
  • Carroll, M. D., & Lacher, A. (2010). Total and high-density lipoprotein cholesterol in adults: National Health and Nutrition Examination Survey, 2009–2010 (Vol. 92, pp. 1–8). U.S. Department of Health and Human services - Centers for Disease Control and Prevention National Center for Health Statistics.
  • Chadwick, A. C., Jensen, D. R., Hanson, P. J., Lange, P. T., Proudfoot, S. C., Peterson, F. C., Volkman, B. F., & Sahoo, D. (2017). NMR structure of the C-terminal transmembrane domain of the HDL receptor, SR-BI, and a functionally relevant leucine zipper motif. Structure (London, England : 1993), 25(3), 446–457. https://doi.org/10.1016/j.str.2017.01.001
  • Davis, H. R., & Veltri, E. P. (2007). Zetia: Inhibition of Niemann-Pick C1 like 1 (NPC1L1) to reduce intestinal cholesterol absorption and treat hyperlipidemia. Journal of Atherosclerosis and Thrombosis, 14(3), 99–108. https://doi.org/10.5551/jat.14.99
  • Deocaris, C. C., Lu, W.-J., C. Kaul, S., & Wadhwa, R. (2012). Druggability of mortalin for cancer and neuro-degenerative disorders. Current Pharmaceutical Design, 19(3), 418–429. https://doi.org/10.2174/13816128130308
  • Derosa, G., & Maffioli, P. (2012). α-Glucosidase inhibitors and their use in clinical practice. Archives of Medical Science : AMS, 8(5), 899–906. https://doi.org/10.5114/aoms.2012.31621
  • Ferguson, R. D., Gallagher, E. J., Scheinman, E. J., Damouni, R., & LeRoith, D. (2013). The epidemiology and molecular mechanisms linking obesity, diabetes, and cancer. In Gerald Litwack (Ed.), Vitamins and hormones (1st ed., Vol. 93). Elsevier Inc. https://doi.org/10.1016/B978-0-12-416673-8.00010-1
  • Gangadharappa, B. S., Sharath, R., Revanasiddappa, P. D., Chandramohan, V., Balasubramaniam, M., & Vardhineni, T. P. (2020). Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors. Journal of Biomolecular Structure & Dynamics, 38(13), 3757–3771. https://doi.org/10.1080/07391102.2019.1667265
  • Ghani, U. (2015). Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. European Journal of Medicinal Chemistry, 103, 133–162. https://doi.org/10.1016/j.ejmech.2015.08.043
  • Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor-ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/s12551-013-0130-2
  • Hakamata, W., Kurihara, M., Okuda, H., Nishio, T., & Oku, T. (2009). Design and Screening Strategies for alpha-glucosidase inhibitors based on enzymological information . Current Topics in Medicinal Chemistry, 9(1), 3–12. https://doi.org/10.2174/156802609787354306
  • Halder, D., Das, S., Joseph, A., & Jeyaprakash, R. S. (2022). Molecular docking and dynamics approach to in silico drug repurposing for inflammatory bowels disease by targeting TNF alpha. Journal of Biomolecular Structure and Dynamics, 40, 1–14. https://doi.org/10.1080/07391102.2022.2050948
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 520–552. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
  • Huang, C. S., Yu, X., Fordstrom, P., Choi, K., Chung, B. C., Roh, S. H., Chiu, W., Zhou, M., Min, X., & Wang, Z. (2020). Cryo-EM structures of NPC1L1 reveal mechanisms of cholesterol transport and ezetimibe inhibition. Science Advances, 6(25), 1–12. https://doi.org/10.1126/sciadv.abb1989
  • Jemal, A., Bray, F., & Ferlay, J. (1999). Global cancer statistics: 2011. CA: A Cancer Journal for Clinicians, 49(2), 33–64. https://doi.org/10.3322/caac.20107
  • Jeong, S. M., Choi, S., Kim, K., Kim, S. M., Lee, G., Son, J. S., Yun, J. M., & Park, S. M. (2018). Association of change in total cholesterol level with mortality: A population-based study. Plos One, 13(4), e0196030. https://doi.org/10.1371/journal.pone.0196030
  • Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., Pandey, A., Garg, V. K., Sethi, G., & Bishayee, A. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in Cancer Biology, 69, 5–23. https://doi.org/10.1016/j.semcancer.2019.08.014
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lo, S. C., Li, X., Henzl, M. T., Beamer, L. J., & Hannink, M. (2006). Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. The EMBO Journal, 25(15), 3605–3617. https://doi.org/10.1038/sj.emboj.7601243
  • Malaviya, A., Paari, K. A., Malviya, S., Kondapalli, V. K., Ghosh,., & A., S. R. A. (2021). Gut microbiota and cancer correlates. In Indu Pal Kaur (Editor-in-Chief) and Parneet Kaur Deol (Ed.), Probiotic research in therapeutics: Applications in cancers and immunological diseases (Vol. 1, pp. 1–27). Singapore: Springer.
  • Matsuda, H., Murakami, T., Kishi, A., & Yoshikawa, M. (2001). Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorganic & Medicinal Chemistry, 9(6), 1499–1507. https://doi.org/10.1016/S0968-0896(01)00024-4
  • Maurya, R. (2010). Chemistry and pharmacology of Withania coagulans : An Ayurvedic remedy. The Journal of Pharmacy and Pharmacology, 62(2), 153–160. https://doi.org/10.1211/jpp.62.02.0001
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-B
  • Nguyen, T., Nioi, P., & Pickett, C. B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry, 284(20), 13291–13295. https://doi.org/10.1074/jbc.R900010200
  • Panwar, H., Calderwood, D., Grant, I. R., Grover, S., & Green, B. D. (2014). Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential. European Journal of Nutrition, 53(7), 1465–1474. https://doi.org/10.1007/s00394-013-0649-9
  • Prasanth, D. S. N. B. K., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., & Guntupalli, C. (2021). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure & Dynamics, 39(13), 4618–4632. https://doi.org/10.1080/07391102.2020.1779129
  • Purohit, R. (2014). Role of ELA region in auto-activation of mutant KIT receptor: A molecular dynamics simulation insight. Journal of Biomolecular Structure & Dynamics, 32(7), 1033–1046. https://doi.org/10.1080/07391102.2013.803264
  • Rai, M., Jogee, P. S., Agarkar, G., & Santos, C. A. D. (2016). Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives. Pharmaceutical Biology, 54(2), 189–197. https://doi.org/10.3109/13880209.2015.1027778
  • Roig-Zamboni, V., Cobucci-Ponzano, B., Iacono, R., Ferrara, M. C., Germany, S., Bourne, Y., Parenti, G., Moracci, M., & Sulzenbacher, G. (2017). Structure of human lysosomal acid α-glucosidase-A guide for the treatment of Pompe disease. Nature Communications, 8(1), 1-8. https://doi.org/10.1038/s41467-017-01263-3
  • Rutwick Surya, U., & Praveen, N. (2021). A molecular docking study of SARS-CoV-2 main protease against phytochemicals of Boerhavia diffusa Linn. for novel COVID-19 drug discovery. Virusdisease, 32(1), 46–54. https://doi.org/10.1007/s13337-021-00683-6
  • Saleem, S., Muhammad, G., Hussain, M. A., Altaf, M., & Abbas Bukhari, S. N. (2020). Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iranian Journal of Basic Medical Sciences, 23(12), 1501–1526. https://doi.org/10.22038/ijbms.2020.44254.10378[33489024
  • Sari, A. N., Bhargava, P., Dhanjal, J. K., Putri, J. F., Radhakrishnan, N., Shefrin, S., Ishida, Y., Terao, K., Sundar, D., Kaul, S. C., & Wadhwa, R. (2020). Combination of withaferin-A and CAPE provides superior anticancer potency: Bioinformatics and experimental evidence to their molecular targets and mechanism of action. Cancers, 12(5), 1160–1125. https://doi.org/10.3390/cancers12051160
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sever, R., & Brugge, J. S. (2015). Genetic and epigenetic mechanisms of cancer progression. Cold Spring Harbor Perspectives in Medicine, 5(4), A006098–21. https://doi.org/10.1101/cshperspect.a006098
  • Sharma, A., Shanker, C., Tyagi, L. K., Singh, M., & Rao, C. V. (2008). Herbal medicine for market potential in India: An overview. Academic Journal of Plant, 1(2), 26–36.
  • Shen, W. J., Azhar, S., & Kraemer, F. B. (2018). SR-B1: A unique multifunctional receptor for cholesterol influx and efflux. Annual Review of Physiology, 80, 95–116. https://doi.org/10.1146/annurev-physiol-021317-121550
  • Solis, F. J., & Wets, R. J. B. (1981). Minimization by random search techniques. Mathematics of Operations Research, 6(1), 19–30. https://doi.org/10.1287/moor.6.1.19
  • Surya, U. R., Naik, P. M., Vinayak, U., & Praveen, N. (2021). A critical review of anticancer properties of Withania somnifera (L.) Dunal with respect to the biochemical mechanisms of its phytochemical constituents. Plant Science Today, 8(2), 236–249. https://doi.org/10.14719/pst.2021.8.2.969
  • Szarc Vel Szic, K., Op De Beeck, K., Ratman, D., Wouters, A., Beck, I. M., Declerck, K., Heyninck, K., Fransen, E., Bracke, M., De Bosscher, K., Lardon, F., Van Camp, G., & Vanden Berghe, W. (2014). Pharmacological levels of Withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells. PLoS ONE, 9(2), e87850. https://doi.org/10.1371/journal.pone.0087850
  • Tribolo, S., Berrin, J. G., Kroon, P. A., Czjzek, M., & Juge, N. (2007). The Crystal Structure of Human Cytosolic beta-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase . Journal of Molecular Biology, 370(5), 964–975. (https://doi.org/10.1016/j.jmb.2007.05.034
  • US Department of Health and Human Services. (2020). National Diabetes Statistics Report, 2020. National Diabetes Statistics Report, 2.
  • Vaishnavi, K., Saxena, N., Shah, N., Singh, R., Manjunath, K., Uthayakumar, M., Kanaujia, S. P., Kaul, S. C., Sekar, K., & Wadhwa, R. (2012). Differential activities of the two closely related withanolides, Withaferin A and Withanone: Bioinformatics and experimental evidences. PLoS ONE, 7(9), e44419. https://doi.org/10.1371/journal.pone.0044419
  • Vigneri, P., Frasca, F., Sciacca, L., Pandini, G., & Vigneri, R. (2009). Diabetes and cancer. Endocrine-Related Cancer, 16(4), 1103–1123. https://doi.org/10.1677/ERC-09-0087
  • Widodo, N., Takagi, Y., Shrestha, B. G., Ishii, T., Kaul, S. C., & Wadhwa, R. (2008). Selective killing of cancer cells by leaf extract of Ashwagandha: Components, activity and pathway analyses. Cancer Letters, 262(1), 37–47. https://doi.org/10.1016/j.canlet.2007.11.037
  • Yang, L., Li, H., Jiang, Y., Zuo, J., & Liu, W. (2013). Inhibition of mortalin expression reverses cisplatin resistance and attenuates growth of ovarian cancer cells. Cancer Letters, 336(1), 213–221. https://doi.org/10.1016/j.canlet.2013.05.004
  • Yun, C. O., Bhargava, P., Na, Y., Lee, J. S., Ryu, J., Kaul, S. C., & Wadhwa, R. (2017). Relevance of mortalin to cancer cell stemness and cancer therapy. Scientific Reports, 7, 42016–42010. https://doi.org/10.1038/srep42016
  • Zimmet, P. Z., Magliano, D. J., Herman, W. H., & Shaw, J. E. (2014). Diabetes: A 21st century challenge. The Lancet. Diabetes & Endocrinology, 2(1), 56–64. https://doi.org/10.1016/S2213-8587(13)70112-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.