231
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structure-guided pharmacophore based virtual screening, docking, and molecular dynamics to discover repurposed drugs as novel inhibitors against endoribonuclease Nsp15 of SARS-CoV-2

ORCID Icon, &
Pages 5096-5106 | Received 14 Nov 2021, Accepted 14 May 2022, Published online: 02 Jun 2022

References

  • Abdul Samad, F., Suliman, B. A., Basha, S. H., Manivasagam, T., & Essa, M. M. (2016). A comprehensive in silico analysis on the structural and functional impact of SNPs in the congenital heart defects associated with NKX2-5 gene—A molecular dynamic simulation approach. PLoS One, 11(5), e0153999. https://doi.org/10.1371/journal.pone.0153999
  • Alam, S., & Khan, F. (2018). Virtual screening, docking, ADMET and system pharmacology studies on garcinia caged xanthone derivatives for anticancer activity. Scientific Reports, 8(1), 5524. https://doi.org/10.1038/s41598-018-23768-7
  • Baby, S. T., Sharma, S., Enaganti, S., & Cherian, P. R. (2016). Molecular docking and pharmacophore studies of heterocyclic compounds as heat shock protein 90 (Hsp90) inhibitors. Bioinformation, 12(3), 149–155. https://doi.org/10.6026/97320630012149
  • Batool, A., Bibi, N., Amin, F., & Kamal, M. A. (2021). Drug designing against NSP15 of SARS-COV2 via high throughput computational screening and structural dynamics approach. European Journal of Pharmacology, 892, 173779. https://doi.org/10.1016/j.ejphar.2020.173779
  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2), 90–98. https://doi.org/10.1038/nchem.1243
  • CDC. (2021). Coronavirus disease 2019 (COVID-19—Symptoms. centers for disease control and prevention. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
  • Chandra, A., Gurjar, V., Qamar, I., & Singh, N. (2021). Identification of potential inhibitors of SARS-COV-2 endoribonuclease (EndoU) from FDA approved drugs: A drug repurposing approach to find therapeutics for COVID-19. Journal of Biomolecular Structure & Dynamics, 39(12), 4201–4211. https://doi.org/10.1080/07391102.2020.1775127
  • Chen, P.-Y., Tsai, C.-T., Ou, C.-Y., Hsu, W.-T., Jhuo, M.-D., Wu, C.-H., Shih, T.-C., Cheng, T.-H., & Chung, J.-G. (2012). Computational analysis of novel drugs designed for use as acetylcholinesterase inhibitors and histamine H3 receptor antagonists for Alzheimer's disease by docking, scoring and de novo evolution. Molecular Medicine Reports, 5(4), 1043–1048. https://doi.org/10.3892/mmr.2012.757
  • Choi, R., Zhou, M., Shek, R., Wilson, J. W., Tillery, L., Craig, J. K., Salukhe, I. A., Hickson, S. E., Kumar, N., James, R. M., Buchko, G. W., Wu, R., Huff, S., Nguyen, T.-T., Hurst, B. L., Cherry, S., Barrett, L. K., Hyde, J. L., & Voorhis, W. C. V. (2021). High-throughput screening of the ReFRAME, pandemic box, and COVID Box drug repurposing libraries against SARS-CoV-2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity. PLoS One, 16(4), e0250019. https://doi.org/10.1371/journal.pone.0250019
  • Clark, R. D., Strizhev, A., Leonard, J. M., Blake, J. F., & Matthew, J. B. (2002). Consensus scoring for ligand/protein interactions. Journal of Molecular Graphics & Modelling, 20(4), 281–295. https://doi.org/10.1016/S1093-3263(01)00125-5
  • COVID Live—Coronavirus Statistics—Worldometer (n.d). Retrieved March 29, 2022, from. https://www.worldometers.info/coronavirus/
  • De Clercq, E. (2004). Discovery and development of BVDU (brivudin) as a therapeutic for the treatment of herpes zoster. Biochemical Pharmacology, 68(12), 2301–2315. https://doi.org/10.1016/j.bcp.2004.07.039
  • Diallo, B. N., Swart, T., Hoppe, H. C., Tastan Bishop, Ö., & Lobb, K. (2021). Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay. Scientific Reports, 11(1), 1413. https://doi.org/10.1038/s41598-020-80722-2
  • Ding, X., Wu, Y., Wang, Y., Vilseck, J. Z., & Brooks, C. L. (2020). Accelerated CDOCKER with GPUs, parallel simulated annealing, and fast Fourier transforms. Journal of Chemical Theory and Computation, 16(6), 3910–3919. https://doi.org/10.1021/acs.jctc.0c00145
  • Gao, B., Gong, X., Fang, S., Weng, W., Wang, H., Chu, H., Sun, Y., Meng, C., Tan, L., Song, C., Qiu, X., Liu, W., Forlenza, M., Ding, C., & Liao, Y. (2021). Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathogens, 17(2), e1008690. https://doi.org/10.1371/journal.ppat.1008690
  • Glättli, A., Daura, X., & Gunsteren, W. F. V. (2003). A novel approach for designing simple point charge models for liquid water with three interaction sites. Journal of Computational Chemistry, 24(9), 1087–1096. https://doi.org/10.1002/jcc.10235
  • Hesse, S. E., Luethy, P. M., Beigel, J. H., & Zelazny, A. M. (2017). Penicillium citrinum: Opportunistic pathogen or idle bystander? A case analysis with demonstration of galactomannan cross-reactivity. Medical Mycology Case Reports, 17, 8–10. https://doi.org/10.1016/j.mmcr.2017.05.003
  • Hong, S., Seo, S. H., Woo, S.-J., Kwon, Y., Song, M., & Ha, N.-C. (2021). Epigallocatechin gallate inhibits the uridylate-specific endoribonuclease Nsp15 and efficiently neutralizes the SARS-CoV-2 strain. Journal of Agricultural and Food Chemistry, 69(21), 5948–5954. https://doi.org/10.1021/acs.jafc.1c02050
  • Imming, P., Sinning, C., & Meyer, A. (2006). Drugs, their targets and the nature and number of drug targets. Nature Reviews: Drug Discovery, 5(10), 821–834. https://doi.org/10.1038/nrd2132
  • Ivanov, K. A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A. E., & Ziebuhr, J. (2004). Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12694–12699. https://doi.org/10.1073/pnas.0403127101
  • Jamal, Q. M. S., Lohani, M., Siddiqui, M. H., Haneef, M., Gupta, S. K., & Wadhwa, G. (2012). Molecular interaction analysis of cigarette smoke carcinogens NNK and NNAL with enzymes involved in DNA repair pathways: An in silico approach. Bioinformation, 8(17), 795–800. https://doi.org/10.6026/97320630008795
  • Kang, H., Bhardwaj, K., Li, Y., Palaninathan, S., Sacchettini, J., Guarino, L., Leibowitz, J. L., & Kao, C. C. (2007). Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease. Journal of Virology, 81(24), 13587–13597. https://doi.org/10.1128/JVI.00547-07
  • Kim, Y., Jedrzejczak, R., Maltseva, N. I., Wilamowski, M., Endres, M., Godzik, A., Michalska, K., & Joachimiak, A. (2020). Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2 . Protein Science: A Publication of the Protein Society, 29(7), 1596–1605. https://doi.org/10.1002/pro.3873
  • Kim, Y., Wower, J., Maltseva, N., Chang, C., Jedrzejczak, R., Wilamowski, M., Kang, S., Nicolaescu, V., Randall, G., Michalska, K., & Joachimiak, A. (2021). Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Communications Biology, 4(1) https://doi.org/10.1038/s42003-021-01735-9
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Krammer, A., Kirchhoff, P. D., Jiang, X., Venkatachalam, C. M., & Waldman, M. (2005). LigScore: A novel scoring function for predicting binding affinities. Journal of Molecular Graphics & modelling, 23(5), 395–407. https://doi.org/10.1016/j.jmgm.2004.11.007
  • Kurczab, R., & Bojarski, A. J. (2013). New strategy for receptor-based pharmacophore query construction: A case study for 5-HT7 receptor ligands. Journal of Chemical Information and Modeling, 53(12), 3233–3243. https://doi.org/10.1021/ci4005207
  • Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., & Hsueh, P.-R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  • Li, Y., Su, M., Liu, Z., Li, J., Liu, J., Han, L., & Wang, R. (2018). Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark. Nature Protocols, 13(4), 666–680. https://doi.org/10.1038/nprot.2017.114
  • Michele, C., Maria, A. R. D. G., & Giovanni, N. R. (2020). SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Current Medicinal Chemistry, 27(27), 4536–4541.
  • Motwalli, O., & Alazmi, M. (2021). Analysis of natural compounds against the activity of SARS-CoV-2 NSP15 protein towards an effective treatment against COVID-19: A theoretical and computational biology approach. Journal of Molecular Modeling, 27(6), 160. https://doi.org/10.1007/s00894-021-04750-z
  • New coronavirus protein reveals drug target (n.d.). Retrieved May 28, 2021, from. https://news.northwestern.edu/stories/2020/03/new-coronavirus-protein-reveals-drug-target/
  • Ortiz-Alcantara, J., Bhardwaj, K., Palaninathan, S., Frieman, M., Baric, R. S., & Kao, C. C. (2010). Small molecule inhibitors of the SARS-CoV Nsp15 endoribonuclease. Virus Adaptation and Treatment, 2, 125–133. https://doi.org/10.2147/VAAT.S12733
  • Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews: Drug Discovery, 5(12), 993–996. https://doi.org/10.1038/nrd2199
  • Pal, M., Berhanu, G., Desalegn, C., & Kandi, V. (n.d). Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus, 12(3) https://doi.org/10.7759/cureus.7423
  • Pal, S., Kumar, V., Kundu, B., Bhattacharya, D., Preethy, N., Reddy, M. P., & Talukdar, A. (2019). Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I Inhibitors. Computational and Structural Biotechnology Journal, 17, 291–310. https://doi.org/10.1016/j.csbj.2019.02.006
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Rogers, D., & Hopfinger, A. J. (1994). Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. Journal of Chemical Information and Computer Sciences, 34(4), 854–866. https://doi.org/10.1021/ci00020a020
  • Şahin, Ş., Boado-Penas, M. d C., Constantinescu, C., Eisenberg, J., Henshaw, K., Hu, M., Wang, J., & Zhu, W. (2020). First quarter chronicle of COVID-19: An attempt to measure governments’ responses. Risks, 8(4), 115. https://doi.org/10.3390/risks8040115
  • Sahoo, B. M., Ravi Kumar, B. V. V., Sruti, J., Mahapatra, M. K., Banik, B. K., & Borah, P. (2021). Drug repurposing strategy (DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infection. Frontiers in Molecular Biosciences, 8, 628144. https://doi.org/10.3389/fmolb.2021.628144
  • Savale, R. U., Bhowmick, S., Osman, S. M., Alasmary, F. A., Almutairi, T. M., Abdullah, D. S., Patil, P. C., & Islam, M. A. (2021). Pharmacoinformatics approach based identification of potential Nsp15 endoribonuclease modulators for SARS-CoV-2 inhibition. Archives of Biochemistry and Biophysics, 700, 108771. https://doi.org/10.1016/j.abb.2021.108771
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica: Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shahbaaz, M., Nkaule, A., & Christoffels, A. (2019). Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Scientific Reports, 9(1), 4405. https://doi.org/10.1038/s41598-019-40621-7
  • Singh, S., & Srivastava, P. (2014). Combined 3D QSAR based virtual screening and molecular docking study of some selected PDK-1 kinase inhibitors. Journal of Computational Medicine, 2014, e563080–12. https://doi.org/10.1155/2014/563080
  • Wang, H., Li, X., Li, T., Zhang, S., Wang, L., Wu, X., & Liu, J. (2020). The genetic sequence, origin, and diagnosis of SARS-CoV-2. European Journal of Clinical Microbiology & Infectious Diseases, 39(9), 1629–1635. https://doi.org/10.1007/s10096-020-03899-4
  • Wang, R., Lu, Y., & Wang, S. (2003). Comparative evaluation of 11 scoring functions for molecular docking. Journal of Medicinal Chemistry, 46(12), 2287–2303. https://doi.org/10.1021/jm0203783

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.