302
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational discovery of small drug-like compounds as potential inhibitors of PD-1/PD-L1 interactions

, & ORCID Icon
Pages 5345-5361 | Received 30 Nov 2020, Accepted 30 May 2022, Published online: 13 Jun 2022

References

  • Bellmunt, J., Powles, T., & Vogelzang, N. J. (2017). A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now. Cancer Treatment Reviews, 54, 58–67. https://doi.org/10.1016/j.ctrv.2017.01.007
  • Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 3(3), 435–444. https://doi.org/10.1002/cmdc.200700139
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chen, T., Li, Q., Liu, Z., Chen, Y., Feng, F., & Sun, H. (2019). Peptide-based and small synthetic molecule inhibitors on PD-1/PD-L1 pathway: A new choice for immunotherapy? European Journal of Medicinal Chemistry, 161, 378–398. https://doi.org/10.1016/j.ejmech.2018.10.044
  • Cheng, B., Yuan, W.-E., Su, J., Liu, Y., & Chen, J. (2018). Recent advances in small molecule based cancer immunotherapy. European Journal of Medicinal Chemistry, 157, 582–598. https://doi.org/10.1016/j.ejmech.2018.08.028
  • Daina, A., &Zoete, V. (2016). A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem., 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182 27218427
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davis, I. W., & Baker, D. (2009). RosettaLigand docking with full ligand and receptor flexibility. Journal of Molecular Biology, 385(2), 381–392. https://doi.org/10.1016/j.jmb.2008.11.010
  • Deng, R., Bumbaca, D., Pastuskovas, C. V., Boswell, C. A., West, D., Cowan, K. J., Chiu, H., McBride, J., Johnson, C., Xin, Y., Koeppen, H., Leabman, M., & Iyer, S. (2016). Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. mAbs, 8(3), 593–603. 10.1080/19420862.2015.1136043.
  • Dermani, F. K., Samadi, P., Rahmani, G., Kohlan, A. K., & Najafi, R. (2019). PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. Journal of Cellular Physiology, 234(2), 1313–1325. https://doi.org/10.1002/jcp.27172
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. 10.1021/jm000292e.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Forli, S., Huey, R., Pique, M., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Golbraikh, A., Wang, X. S., Zhu, H., & Tropsha, A. (2017). Predictive QSAR modeling: Methods and applications in drug discovery and chemical risk assessment. In J. Leszczynski, A. Kaczmarek-Kedziera, T. Puzyn, M. G. Papadopoulos, H. Reis, & M. K. Shukla (Eds.), Handbook of computational chemistry (pp. 2303–2340). Springer International Publishing. https://doi.org/10.1007/978-3-319-27282-5_37
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6–7), 591–604. https://doi.org/10.1007/s10822-010-9349-1
  • Guzik, K., Tomala, M., Muszak, D., Konieczny, M., Hec, A., Błaszkiewicz, U., Pustuła, M., Butera, R., Dömling, A., & Holak, T. A. (2019). Development of the inhibitors that target the PD-1/PD-L1 interaction-a brief look at progress on small molecules, peptides and macrocycles. Molecules (Basel, Switzerland), 24(11), 2071. https://doi.org/10.3390/molecules24112071
  • Guzik, K., Zak, K. M., Grudnik, P., Magiera, K., Musielak, B., Törner, R., Skalniak, L., Dömling, A., Dubin, G., & Holak, T. A. (2017). Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. Journal of Medicinal Chemistry, 60(13), 5857–5867. https://doi.org/10.1021/acs.jmedchem.7b00293
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kaufman, H. L., Russell, J., Hamid, O., Bhatia, S., Terheyden, P., D'Angelo, S. P., Shih, K. C., Lebbé, C., Linette, G. P., Milella, M., Brownell, I., Lewis, K. D., Lorch, J. H., Chin, K., Mahnke, L., von Heydebreck, A., Cuillerot, J. M., & Nghiem, P. (2016). Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. The Lancet. Oncology, 17(10), 1374–1385. https://doi.org/10.1016/S1470-2045(16)30364-3
  • Khunger, M., Rakshit, S., Pasupuleti, V., Hernandez, A. V., Mazzone, P., Stevenson, J., Pennell, N. A., & Velcheti, V. (2017). Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: A systematic review and meta-analysis of trials. Chest, 152(2), 271–281. https://doi.org/10.1016/j.chest.2017.04.177
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kopalli, S. R.,Kang, T.-B.,Lee, K.-H., &Koppula, S. (2019). Novel Small Molecule Inhibitors of Programmed Cell Death (PD)-1, and its Ligand, PD-L1 in Cancer Immunotherapy: A Review Update of Patent Literature. Recent Patents on anti-Cancer Drug Discovery, 14(2), 100–112. https://doi.org/10.2174/1574892813666181029142812 30370857
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuseva, C., Schultz, T. W., Yordanova, D., Tankova, K., Kutsarova, S., Pavlov, T., Chapkanov, A., Georgiev, M., Gissi, A., Sobanski, T., & Mekenyan, O. G. (2019). The implementation of RAAF in the OECD QSAR toolbox. Regulatory Toxicology and Pharmacology : RTP, 105, 51–61. https://doi.org/10.1016/j.yrtph.2019.03.018
  • Kythreotou, A., Siddique, A., Mauri, F. A., Bower, M., & Pinato, D. J. (2018). PD-L1. Journal of Clinical Pathology, 71(3), 189–194. https://doi.org/10.1136/jclinpath-2017-204853
  • Lemmon, G., & Meiler, J. (2012). Rosetta ligand docking with flexible XML protocols. Methods in Molecular Biology (Clifton, N.J, )819, 143–155. 10.1007/978-1-61779-465-0_10.
  • LigPrep version 3.4, S., LLC (2015).
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. PMID: 11259830. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Madhavi Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • McBride, S., Sherman, E., Tsai, C. J., Baxi, S., Aghalar, J., Eng, J., Zhi, W. I., McFarland, D., Michel, L. S., Young, R., Lefkowitz, R., Spielsinger, D., Zhang, Z., Flynn, J., Dunn, L., Ho, A., Riaz, N., Pfister, D., & Lee, N. (2021). Randomized phase II trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 39(1), 30–37. 10.1200/JCO.20.00290.
  • Mejías, C., &Guirola, O. (2019). Pharmacophore model of immunocheckpoint protein PD-L1 by cosolvent molecular dynamics simulations. Journal of Molecular Graphics & Modelling, 91, 105–111. https://doi.org/10.1016/j.jmgm.2019.06.001 31202914
  • Muegge, I., Heald, S. L., & Brittelli, D. ) (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. 10.1021/jm015507e.
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. https://doi.org/10.1021/jm300687e
  • Naidoo, J., Page, D. B., Li, B. T., Connell, L. C., Schindler, K., Lacouture, M. E., Postow, M. A., & Wolchok, J. D. (2015). Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 26(12), 2375–2391. 10.1093/annonc/mdv383.
  • Paciotti, R., Agamennone, M., Coletti, C., & Storchi, L. (2020). Characterization of PD-L1 binding sites by a combined FMO/GRID-DRY approach. Journal of Computer-Aided Molecular Design, 34(8), 897–914. 10.1007/s10822-020-00306-0.
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Patsoukis, N.,Wang, Q.,Strauss, L., &Boussiotis, V. (2020). Revisiting the PD-1 pathway. Science Advaces, 6(38), eabd2712.
  • Perry, E., Mills, J. J., Zhao, B., Wang, F., Sun, Q., Christov, P. P., Tarr, J. C., Rietz, T. A., Olejniczak, E. T., Lee, T., & Fesik, S. (2019). Fragment-based screening of programmed death ligand 1 (PD-L1). Bioorganic & Medicinal Chemistry Letters, 29(6), 786–790. https://doi.org/10.1016/j.bmcl.2019.01.028
  • Peters, S., Gettinger, S., Johnson, M. L., Jänne, P. A., Garassino, M. C., Christoph, D., Toh, C. K., Rizvi, N. A., Chaft, J. E., Carcereny Costa, E., Patel, J. D., Chow, L. Q. M., Koczywas, M., Ho, C., Früh, M., van den Heuvel, M., Rothenstein, J., Reck, M., Paz-Ares, L., … Felip, E. (2017). Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 35(24), 2781–2789. https://doi.org/10.1200/JCO.2016.71.9476
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • QikProp, Schrödinger, LLC (2020).
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. (Web Server issue), https://doi.org/10.1093/nar/gkv315
  • Scheurer, M., Rodenkirch, P., Siggel, M., Bernardi, R. C., Schulten, K., Tajkhorshid, E., & Rudack, T. (2018). PyContact: Rapid, customizable, and visual analysis of noncovalent interactions in MD simulations. Biophysical Journal, 114(3), 577–583. https://doi.org/10.1016/j.bpj.2017.12.003
  • Schrödinger Release 2017-2: Epik; Schrödinger, LLC (2018).
  • Schrödinger Release 2017-2: Glide; Schrödinger, LLC (2018).
  • Schrödinger Release 2017-2: Induced Fit Docking protocol; Glide; Schrödinger, LLC (2016).
  • Schrödinger Release 2017-2: LigPrep; Schrödinger, LLC (2018).
  • Schrödinger Release 2017-2: Protein Preparation Wizard; Schrödinger, LLC (2016).
  • Schultz, T. W., Diderich, R., Kuseva, C. D., & Mekenyan, O. G. (2018). The OECD QSAR toolbox starts its second decade. Methods in Molecular Biology (Clifton, N, 1800, 55–77. J) https://doi.org/10.1007/978-1-4939-7899-1_2
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK( a ) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Sherman, W., Beard, H. S., & Farid, R. (2006a). Use of an induced fit receptor structure in virtual screening. Chemical Biology & Drug Design, 67(1), 83–84. https://doi.org/10.1111/j.1747-0285.2005.00327.x
  • Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A., & Farid, R. (2006b). Novel procedure for modeling ligand/receptor induced fit effects. Journal of Medicinal Chemistry, 49(2), 534–553. https://doi.org/10.1021/jm050540c
  • Shi, D.,An, X.,Bai, Q.,Bing, Z.,Zhou, S.,Liu, H., &Yao, X. (2019). Computational Insight Into the Small Molecule Intervening PD-L1 Dimerization and the Potential Structure-Activity Relationship. Frontiers in Chemistry, 7, 764https://doi.org/10.3389/fchem.2019.00764 31781546
  • Skalniak, L., Zak, K. M., Guzik, K., Magiera, K., Musielak, B., Pachota, M., Szelazek, B., Kocik, J., Grudnik, P., Tomala, M., Krzanik, S., Pyrc, K., Dömling, A., Dubin, G., & Holak, T. A. (2017). Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget, 8(42), 72167–72181. https://doi.org/10.18632/oncotarget.20050
  • Spagnuolo, A., & Gridelli, C. (2018). "Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer": Is there a substantial difference or not? Journal of Thoracic Disease, 10(Suppl 33), S4065–S4068. https://doi.org/10.21037/jtd.2018.09.83
  • Stewart, R., Morrow, M., Hammond, S. A., Mulgrew, K., Marcus, D., Poon, E., Watkins, A., Mullins, S., Chodorge, M., Andrews, J., Bannister, D., Dick, E., Crawford, N., Parmentier, J., Alimzhanov, M., Babcook, J. S., Foltz, I. N., Buchanan, A., Bedian, V., Wilkinson, R. W., & McCourt, M. (2015). Identification and characterization of MEDI4736, an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immunology Research, 3(9), 1052–1062. https://doi.org/10.1158/2326-6066.CIR-14-0191
  • Sun, X., Liang, L., Gu, J., Zhuo, W., Yan, X., Xie, T., Wu, Z., Liu, X., Gou, X., Liu, W., He, G., Gan, Y., Chang, S., Shi, H., & Hu, J. (2019). Inhibition of programmed cell death protein ligand-1 (PD-L1) by benzyl ether derivatives: Analyses of conformational change, molecular recognition and binding free energy. Journal of Biomolecular Structure & Dynamics, 37(18), 4801–4812. 10.1080/07391102.2018.1563568
  • Sunseri, J., & Koes, D. R. (2016). Pharmit: Interactive exploration of chemical space. Nucleic Acids Research, 44(W1), W442–W448. https://doi.org/10.1093/nar/gkw287
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein-small ligand complexes: The PRODIGY-LIG web server. Bioinformatics (Oxford, England), 35(9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, T., Wu, X., Guo, C., Zhang, K., Xu, J., Li, Z., & Jiang, S. (2019). Development of inhibitors of the programmed cell death-1/programmed cell death-ligand 1 signaling pathway. Journal of Medicinal Chemistry, 62(4), 1715–1730. 10.1021/acs.jmedchem.8b00990.
  • Zak, K. M., Grudnik, P., Guzik, K., Zieba, B. J., Musielak, B., Dömling, A., Dubin, G., & Holak, T. A. (2016). Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget, 7(21), 30323–30335. https://doi.org/10.18632/oncotarget.8730
  • Zhan, M.-M., Hu, X.-Q., Liu, X.-X., Ruan, B.-F., Xu, J., & Liao, C. (2016). From monoclonal antibodies to small molecules: The development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discovery Today, 21(6), 1027–1036. https://doi.org/10.1016/j.drudis.2016.04.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.