287
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational insight into the binding of bryostatin 1 with ferritin: implication of natural compounds in Alzheimer’s disease therapeutics

, ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 5635-5645 | Received 15 Apr 2022, Accepted 16 Jun 2022, Published online: 05 Jul 2022

References

  • Abdelhameed, A. S., Nusrat, S., Ajmal, M. R., Zakariya, S. M., Zaman, M., & Khan, R. H. (2017). A biophysical and computational study unraveling the molecular interaction mechanism of a new Janus kinase inhibitor Tofacitinib with bovine serum albumin. Journal of Molecular Recognition, 30(6), e2601. https://doi.org/10.1002/jmr.2601
  • Alam, M., Ali, S., Ashraf, G. M., Bilgrami, A. L., Yadav, D. K., & Hassan, M. I. (2022). Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chemistry, 379, 132135. https://doi.org/10.1016/j.foodchem.2022.132135
  • Alkon, D. L., Epstein, H., Kuzirian, A., Bennett, M. C., & Nelson, T. J. (2005). Protein synthesis required for long-term memory is induced by PKC activation on days before associative learning. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 16432–16437. https://doi.org/10.1073/pnas.0508001102
  • Alkon, D. L., Hongpaisan, J., & Sun, M.-K. (2017). Effects of chronic bryostatin-1 on treatment-resistant depression in rats. European Journal of Pharmacology, 807, 71–74. https://doi.org/10.1016/j.ejphar.2017.05.001
  • Altis, A., Otten, M., Nguyen, P. H., Hegger, R., & Stock, G. (2008). Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis. The Journal of Chemical Physics, 128(24), 245102. https://doi.org/10.1063/1.2945165
  • Amir, M., Ahmad, S., Ahamad, S., Kumar, V., Mohammad, T., Dohare, R., Alajmi, M. F., Rehman, T., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Impact of Gln94Glu mutation on the structure and function of protection of telomere 1, a cause of cutaneous familial melanoma. Journal of Biomolecular Structure and Dynamics, 38(5), 1514–1524. https://doi.org/10.1080/07391102.2019.1610500
  • Amir, M., Mohammad, T., Prasad, K., Hasan, G. M., Kumar, V., Dohare, R., Islam, A., Ahmad, F., & Imtaiyaz Hassan, M. (2020). Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). Journal of Biomolecular Structure & Dynamics, 38(15), 4625–4634. https://doi.org/10.1080/07391102.2019.1682052
  • Arosio, P., & Levi, S. (2002). Ferritin, iron homeostasis, and oxidative damage. Free Radical Biology & Medicine, 33(4), 457–463. https://doi.org/10.1016/s0891-5849(02)00842-0
  • Balla, G., Jacob, H. S., Balla, J., Rosenberg, M., Nath, K., Apple, F., Eaton, J., & Vercellotti, G. (1992). Ferritin: A cytoprotective antioxidant strategem of endothelium. The Journal of Biological Chemistry, 267(25), 18148–18153.
  • Bester, J., Buys, A., Lipinski, B., Kell, D. B., & Pretorius, E. (2013). High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer's disease. Frontiers in Aging Neuroscience, 5, 88. https://doi.org/10.3389/fnagi.2013.00088
  • Cairo, G., Recalcati, S., Pietrangelo, A., & Minotti, G. (2002). The iron regulatory proteins: Targets and modulators of free radical reactions and oxidative damage. Free Radical Biology & Medicine, 32(12), 1237–1243. https://doi.org/10.1016/S0891-5849(02)00825-0
  • Castro, A. L. G., Cruz, J. N., Sodré, D. F., Correa-Barbosa, J., Azonsivo, R., de Oliveira, M. S., de Sousa Siqueira, J. E., da Rocha Galucio, N. C., de Oliveira Bahia, M., Burbano, R. M. R., do Rosário Marinho, A. M., Percário, S., Dolabela, M. F., & Vale, V. V. (2021). Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. using bioassays and in silico approaches. Arabian Journal of Chemistry, 14(4), 103084. https://doi.org/10.1016/j.arabjc.2021.103084
  • Chasteen, N. D., & Harrison, P. M. (1999). Mineralization in ferritin: An efficient means of iron storage. Journal of Structural Biology, 126(3), 182–194. https://doi.org/10.1006/jsbi.1999.4118
  • Ciasca, G., Papi, M., Chiarpotto, M., Rodio, M., Campi, G., Rossi, C., De Sole, P., & Bianconi, A. (2012). Transient state kinetic investigation of ferritin iron release. Applied Physics Letters, 100(7), 073703. https://doi.org/10.1063/1.3685706
  • Connor, J. R., Snyder, B. S., Arosio, P., Loeffler, D. A., & LeWitt, P. (1995). A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. Journal of Neurochemistry, 65(2), 717–724.
  • Costa, E., Silva, R., Espejo-Román, J., Neto, M. d. A., Cruz, J., Leite, F., Silva, C., Pinheiro, J., Macêdo, W., & Santos, C. (2020). Chemometric methods in antimalarial drug design from 1, 2, 4, 5-tetraoxanes analogues. SAR and QSAR in Environmental Research, 31(9), 677–695.
  • Dahiya, R., Mohammad, T., Roy, S., Anwar, S., Gupta, P., Haque, A., Khan, P., Kazim, S. N., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Investigation of inhibitory potential of quercetin to the pyruvate dehydrogenase kinase 3: Towards implications in anticancer therapy. International Journal of Biological Macromolecules, 136, 1076–1085. https://doi.org/10.1016/j.ijbiomac.2019.06.158
  • De Sole, P., Rossi, C., Chiarpotto, M., Ciasca, G., Bocca, B., Alimonti, A., Bizzarro, A., Rossi, C., & Masullo, C. (2013). Possible relationship between Al/ferritin complex and Alzheimer's disease. Clinical Biochemistry, 46(1–2), 89–93. https://doi.org/10.1016/j.clinbiochem.2012.10.023
  • DeChristopher, B. A., Loy, B. A., Marsden, M. D., Schrier, A. J., Zack, J. A., & Wender, P. A. (2012). Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro. Nature Chemistry, 4(9), 705–710.
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Dobson, J. (2001). Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Letters, 496(1), 1–5. https://doi.org/10.1016/S0014-5793(01)02386-9
  • El-Agnaf, O. M., Mahil, D. S., Patel, B. P., & Austen, B. M. (2000). Oligomerization and toxicity of β-amyloid-42 implicated in Alzheimer's disease. Biochemical and Biophysical Research Communications, 273(3), 1003–1007. https://doi.org/10.1006/bbrc.2000.3051
  • Etcheberrigaray, R., Tan, M., Dewachter, I., Kuipéri, C., Van der Auwera, I., Wera, S., Qiao, L., Bank, B., Nelson, T. J., Kozikowski, A. P., Van Leuven, F., & Alkon, D. L. (2004). Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11141–11146. https://doi.org/10.1073/pnas.0403921101
  • Everett, J., Céspedes, E., Shelford, L. R., Exley, C., Collingwood, J. F., Dobson, J., van der Laan, G., Jenkins, C. A., Arenholz, E., & Telling, N. D. (2014). Evidence of redox-active iron formation following aggregation of ferrihydrite and the Alzheimer’s disease peptide β-amyloid. Inorganic Chemistry, 53(6), 2803–2809. https://doi.org/10.1021/ic402406g
  • Fatima, S., Mohammad, T., Jairajpuri, D. S., Rehman, M. T., Hussain, A., Samim, M., Ahmad, F. J., Alajmi, M. F., & Hassan, M. I. (2020). Identification and evaluation of glutathione conjugate gamma-l-glutamyl-l-cysteine for improved drug delivery to the brain. Journal of Biomolecular Structure & Dynamics, 38(12), 3610–3620. https://doi.org/10.1080/07391102.2019.1664937
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Hale, K. J., & Manaviazar, S. (2010). New approaches to the total synthesis of the bryostatin antitumor macrolides. Chemistry, an Asian Journal, 5(4), 704–754. https://doi.org/10.1002/asia.200900634
  • Halliwell, B., & Gutteridge, J. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. The Biochemical Journal, 219(1), 1–14.
  • Harrison, P. M., & Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1275(3), 161–203. https://doi.org/10.1016/0005-2728(96)00022-9
  • Hassan, N. M., Alhossary, A. A., Mu, Y., & Kwoh, C.-K. (2017). Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Scientific Reports, 7(1), 13. https://doi.org/10.1038/s41598-017-15571-7
  • Hubbard, R. E., & Haider, M. K. (2010). Hydrogen bonds in proteins: Role and strength. In: Encyclopedia of Life Sciences (ELS) (pp. 1-7). Wiley.
  • Jarrett, J. T., Berger, E. P., & Lansbury, P. T., Jr. (1993). The carboxy terminus of the. beta. amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry, 32(18), 4693–4697. https://doi.org/10.1021/bi00069a001
  • Khan, P., Rahman, S., Queen, A., Manzoor, S., Naz, F., Hasan, G. M., Luqman, S., Kim, J., Islam, A., Ahmad, F., & Hassan, M. I. (2017). Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: In silico and in vitro studies. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-09941-4
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Kollár, P., Rajchard, J., Balounová, Z., & Pazourek, J. (2014). Marine natural products: Bryostatins in preclinical and clinical studies. Pharmaceutical Biology, 52(2), 237–242. https://doi.org/10.3109/13880209.2013.804100
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962.
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. ACS Publications.
  • Lawson, D. M., Treffry, A., Artymiuk, P. J., Harrison, P. M., Yewdall, S. J., Luzzago, A., Cesareni, G., Levi, S., & Arosio, P. (1989). Identification of the ferroxidase centre in ferritin. FEBS Letters, 254(1–2), 207–210. https://doi.org/10.1016/0014-5793(89)81040-3
  • Lee, J.-Y., Mook-Jung, I., & Koh, J.-Y. (1999). Histochemically reactive zinc in plaques of the Swedish mutant β-amyloid precursor protein transgenic mice. The Journal of Neuroscience, 19(11), RC10–RC10. https://doi.org/10.1523/JNEUROSCI.19-11-j0002.1999
  • Lever, J., Krzywinski, M., & Altman, N. (2017). Points of significance: Principal component analysis. Nature Methods, 14(7), 641–643. https://doi.org/10.1038/nmeth.4346
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118–126.
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2009). Principal component analysis for protein folding dynamics. Journal of Molecular Biology, 385(1), 312–329. https://doi.org/10.1016/j.jmb.2008.10.018
  • Meadowcroft, M. D., Connor, J. R., Smith, M. B., & Yang, Q. X. (2009). MRI and histological analysis of beta-amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice. Journal of Magnetic Resonance Imaging, 29(5), 997–1007. https://doi.org/10.1002/jmri.21731
  • Miller, L. M., Wang, Q., Telivala, T. P., Smith, R. J., Lanzirotti, A., & Miklossy, J. (2006). Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. Journal of Structural Biology, 155(1), 30–37. https://doi.org/10.1016/j.jsb.2005.09.004
  • Minotti, G., & Aust, S. D. (1989). The role of iron in oxygen radical mediated lipid peroxidation. Chemico-Biological Interactions, 71(1), 1–19. https://doi.org/10.1016/0009-2797(89)90087-2
  • Mohammad, T., Khan, F. I., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4). Journal of Biomolecular Structure & Dynamics, 37(7), 1813–1829.
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings in Bioinformatics, 22(4), bbaa279. https://doi.org/10.1093/bib/bbaa279
  • Mohammad, T., Shamsi, A., Anwar, S., Umair, M., Hussain, A., Rehman, M. T., AlAjmi, M. F., Islam, A., & Hassan, M. I. (2020). Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Research, 288, 198102.
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using autodock for ligand-receptor docking. Current Protocols in Bioinformatics, 24(1), 8.14. 11–18.14. 40. https://doi.org/10.1002/0471250953.bi0814s24
  • Murray, M. T., White, K., & Munro, H. N. (1987). Conservation of ferritin heavy subunit gene structure: implications for the regulation of ferritin gene expression. Proceedings of the National Academy of Sciences of the United States of America, 84(21), 7438–7442. https://doi.org/10.1073/pnas.84.21.7438
  • Nelson, T. J., Sun, M.-K., Lim, C., Sen, A., Khan, T., Chirila, F. V., & Alkon, D. L. (2017). Bryostatin effects on cognitive function and PKCɛ in Alzheimer’s disease phase IIa and expanded access trials. Journal of Alzheimer's Disease, 58(2), 521–535. https://doi.org/10.3233/JAD-170161
  • Neto, R. d. A. M., Santos, C. B. R., Henriques, S. V. C., Machado, L. d O., Cruz, J. N., da Silva, C. H. T. d P., Federico, L. B., Oliveira, E. H. C. d., de Souza, M. P. C., da Silva, P. N. B., Taft, C. A., Ferreira, I. M., & Gomes, M. R. F. (2022). Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(5), 2204–2216. https://doi.org/10.1080/07391102.2020.1839562
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Pozzi, C., Di Pisa, F., Bernacchioni, C., Ciambellotti, S., Turano, P., & Mangani, S. (2015). Iron binding to human heavy-chain ferritin. Acta Crystallographica Section D Biological Crystallography, 71(9), 1909–1920. https://doi.org/10.1107/S1399004715013073
  • Quintana, C., & Gutiérrez, L. (2010). Could a dysfunction of ferritin be a determinant factor in the aetiology of some neurodegenerative diseases? Biochimica et Biophysica Acta, 1800(8), 770–782. https://doi.org/10.1016/j.bbagen.2010.04.012
  • Rego, C. M. A., Francisco, A. F., Boeno, C. N., Paloschi, M. V., Lopes, J. A., Silva, M. D. S., Santana, H. M., Serrath, S. N., Rodrigues, J. E., Lemos, C. T. L., Dutra, R. S. S., da Cruz, J. N., dos Santos, C. B. R., da Setúbal, S., Fontes, M. R. M., Soares, A. M., Pires, W. L., & Zuliani, J. P. (2022). Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-08735-7
  • Santana de Oliveira, M., Pereira da Silva, V. M., Cantao Freitas, L., Gomes Silva, S., Nevez Cruz, J., & de Aguiar Andrade, E. H. (2021). Extraction yield, chemical composition, preliminary toxicity of Bignonia nocturna (bignoniaceae) essential oil and in silico evaluation of the interaction. Chemistry & Biodiversity, 18(4), e2000982.
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Part 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shamsi, A., Ahmed, A., & Bano, B. (2018). Probing the interaction of anticancer drug temsirolimus with human serum albumin: Molecular docking and spectroscopic insight. Journal of Biomolecular Structure & Dynamics, 36(6), 1479–1489. https://doi.org/10.1080/07391102.2017.1326320
  • Shamsi, A., Al Shahwan, M., Ahamad, S., Hassan, M. I., Ahmad, F., & Islam, A. (2020). Spectroscopic, calorimetric and molecular docking insight into the interaction of Alzheimer’s drug donepezil with human transferrin: Implications of Alzheimer’s drug. Journal of Biomolecular Structure & Dynamics, 38(4), 1094–1102.
  • Subramanian, V., & Evans, D. G. (2012). A molecular dynamics and computational study of ligand docking and electron transfer in ferritins. The Journal of Physical Chemistry B, 116(31), 9287–9302. https://doi.org/10.1021/jp301055x
  • Svobodová, H., Kosnáč, D., Balázsiová, Z., Tanila, H., Miettinen, P., Sierra, A., Vitovič, P., Wagner, A., Polák, Š., & Kopáni, M. (2019). Elevated age-related cortical iron, ferritin and amyloid plaques in APP (swe)/PS1 (deltaE9) transgenic mouse model of Alzheimer’s disease. Physiological Research, 68(Suppl 4), S445–S451.
  • Turner, P. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Wu, R., Chen, H., Chang, N., Xu, Y., Jiao, J., & Zhang, H. (2020). Unlocking the drug potential of the bryostatin family: recent advances in product synthesis and biomedical applications. Chemistry (Weinheim an Der Bergstrasse, Germany), 26(6), 1166–1195. https://doi.org/10.1002/chem.201903128

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.