520
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations study for the identification of LIM kinase-1 inhibitors

ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 6089-6103 | Received 09 Feb 2022, Accepted 09 Jul 2022, Published online: 21 Jul 2022

References

  • Balasubramaniyan, S., Irfan, N., Umamaheswari, A., & Puratchikody, A. (2018). Design and virtual screening of novel fluoroquinolone analogs as effective mutant DNA GyrA inhibitors against urinary tract infection-causing fluoroquinolone resistant Escherichia coli. RSC Advances, 8(42), 23629–23647. 10.1039/c8ra01854E
  • Ben Zablah, Y., Zhang, H., Gugustea, R., & Jia, Z. (2021). LIM-kinases in synaptic plasticity, memory, and brain diseases. Cells, 10(8), 2079. https://doi.org/10.3390/cells10082079
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Thiel, K., & Wiswedel, B. (2009). KNIME - The Konstanz information miner: version 2.0 and beyond. ACM SIGKDD Explorations Newsletter, 11(1), 26–31. https://doi.org/10.1145/1656274.1656280
  • Case, D., Ben-Shalom, I., Brozell, S. R., Cerutti, D. S., Cheatham, T., Cruzeiro, V. W. D., Darden, T., Duke, R., Ghoreishi, D., & Gilson, M. (2018). Amber 2018. University of California.
  • Cuberos, H., Vallée, B., Vourc'h, P., Tastet, J., Andres, C. R., & Bénédetti, H. (2015). Roles of LIM kinases in central nervous system function and dysfunction. 589(24PartB):3795–3806.
  • Dahlin, J. L., Nissink, J. W. M., Strasser, J. M., Francis, S., Higgins, L., Zhou, H., Zhang, Z., & Walters, M. A. (2015). PAINS in the assay: Chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. Journal of Medicinal Chemistry, 58(5), 2091–2113. https://doi.org/10.1021/jm5019093
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, NJ), 1263, 243–250. eng.
  • Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7(5), 332–344. https://doi.org/10.1038/nrc2106
  • Ganeshpurkar, A., Singh, R., Gore, P. G., Kumar, D., Gutti, G., Kumar, A., & Singh, S. K. (2020). Structure-based screening and molecular dynamics simulation studies for the identification of potential acetylcholinesterase inhibitors. Molecular Simulation, 46(3), 169–185. https://doi.org/10.1080/08927022.2019.1682572
  • Henderson, B. W., Greathouse, K. M., Ramdas, R., Walker, C. K., Rao, T. C., Bach, S. V., Curtis, K. A., Day, J. J., Mattheyses, A. L., & Herskowitz, J. H. (2019). Pharmacologic inhibition of LIMK1 provides dendritic spine resilience against β-amyloid. Science Signaling, 12(587), eaaw9318. eng.
  • Jana, S., Ganeshpurkar, A., & Singh, S. K. (2018). Multiple 3D-QSAR modeling, e-pharmacophore, molecular docking, and in vitro study to explore novel AChE inhibitors. RSC Advances, 8(69), 39477–39495. 10.1039/C8RA08198K
  • Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L. E., Brookes, D. H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara, D. W., Dolinsky, T., Konecny, R., Koes, D. R., Nielsen, J. E., Head-Gordon, T., Geng, W., … Baker, N. A. (2018). Improvements to the APBS biomolecular solvation software suite. Protein Science, 27(1), 112–128. https://doi.org/10.1002/pro.3280
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, S., Park, S., Lee, I., & No, K. J. (2007). PreAD-MET Ver. v2. 0. BMDRC.
  • Ma, X-l., Chen, C., & Yang, J. (2005). Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 26(4), 500–512. https://doi.org/10.1111/j.1745-7254.2005.00068.x
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. eng. https://doi.org/10.1002/jcc.21256
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Ohashi, K., Sampei, K., Nakagawa, M., Uchiumi, N., Amanuma, T., Aiba, S., Oikawa, M., & Mizuno, K. (2014). Damnacanthal, an effective inhibitor of LIM-kinase, inhibits cell migration and invasion. Molecular Biology of the Cell, 25(6), 828–840. eng. https://doi.org/10.1091/mbc.E13-09-0540
  • Pajouhesh, H., & Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. NeuroRx : The Journal of the American Society for Experimental NeuroTherapeutics, 2(4), 541–553. https://doi.org/10.1602/neurorx.2.4.541
  • Ryckbosch, S. M., Wender, P. A., & Pande, V. S. (2017). Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes. Nature Communications, 8(1), 6. https://doi.org/10.1038/s41467-016-0015-8
  • Salah, E., Chatterjee, D., Beltrami, A., Tumber, A., Preuss, F., Canning, P., Chaikuad, A., Knaus, P., Knapp, S., Bullock, A. N., & Mathea, S. (2019). Lessons from LIMK1 enzymology and their impact on inhibitor design. The Biochemical Journal, 476(21), 3197–3209. https://doi.org/10.1042/BCJ20190517
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–447. https://doi.org/10.1093/nar/gkv315
  • Saubern, S., Guha, R., & Baell, J. B. (2011). KNIME workflow to assess PAINS filters in SMARTS Format. Comparison of RDKit and indigo cheminformatics libraries. Molecular Informatics, 30(10), 847–850. https://doi.org/10.1002/minf.201100076
  • Singh, R., Ganeshpurkar, A., Kumar, D., Kumar, D., Kumar, A., & Singh, S. K. (2020). Identifying potential GluN2B subunit containing N-Methyl-D-aspartate receptor inhibitors: An integrative in silico and molecular modeling approach. Journal of Biomolecular Structure & Dynamics, 38(9), 2533–2545. https://doi.org/10.1080/07391102.2019.1635530
  • Sunseri, J., & Koes, D. R. (2016). Pharmit: interactive exploration of chemical space. Nucleic Acids Research, 44(W1), W442–W448. https://doi.org/10.1093/nar/gkw287
  • Umre, R., Ganeshpurkar, A., Ganeshpurkar, A., Pandey, S., Pandey, V., Shrivastava, A., & Dubey, N. (2018). In vitro, in vivo and in silico antiulcer activity of ferulic acid. Future Journal of Pharmaceutical Sciences, 4(2), 248–253. https://doi.org/10.1016/j.fjps.2018.08.001
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E., & Mizuno, K. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganisation. Nature, 393(6687), 809–812. https://doi.org/10.1038/31735
  • Zhang, M., Wang, R., Tian, J., Song, M., Zhao, R., Liu, K., Zhu, F., Shim, J.-H., Dong, Z., & Lee, M.-H. (2021). Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo Journal of Cellular and Molecular Medicine, 25(12), 5560–5571. https://doi.org/10.1111/jcmm.16568
  • Zhao, Z-s., & Manser, E. (2005). PAK and other Rho-associated kinases–effectors with surprisingly diverse mechanisms of regulation. The Biochemical Journal, 386(Pt 2), 201–214. https://doi.org/10.1042/BJ20041638
  • Zhong, W., Zhao, L., Yang, Z., & Yu-Chian Chen, C. (2021). Graph convolutional network approach to investigate potential selective Limk1 inhibitors. Journal of Molecular Graphics & Modelling, 107, 107965. https://doi.org/10.1016/j.jmgm.2021.107965

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.