313
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

DPP-4 inhibition mediated antidiabetic potential of phytoconstituents of an aqueous fruit extract of Withania coagulans (Stocks) Dunal: in-silico, in-vitro and in-vivo assessments

, ORCID Icon, , , , , , & show all
Pages 6145-6167 | Received 27 Apr 2022, Accepted 13 Jul 2022, Published online: 05 Aug 2022

References

  • Allain, C. C., Poon, L. S., Chan, C. S. G., Richmond, W., & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20(4), 470–475. https://doi.org/10.1093/clinchem/20.6.724
  • Al-Masri, I. M., Mohammad, M. K., & Tahaa, M. O. (2009). Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(5), 1061–1066. https://doi.org/10.1080/14756360802610761
  • Al-Rowais, N. A. (2002). Herbal medicine in the treatment of diabetes mellitus. Saudi Medical Journal, 23(11), 1327–1331.
  • Ambade, V. N., Sharma, Y., & Somani, B. (1998). Methods for estimation of blood glucose: A comparative evaluation. Medical Journal, Armed Forces India, 54(2), 131–133. https://doi.org/10.1016/S0377-1237(17)30502-6
  • Ashutosh, U., Sadhana, K., & Mujeeb, R. U. (2018). Evaluation of antidiabetic activity of fruits of Withania coagulans in streptozotocin induced diabetic rats. Journal of Drug Delivery and Therapeutics, 8(2), 25–28.
  • Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal : SPJ : The Official Publication of the Saudi Pharmaceutical Society, 24(5), 547–553. https://doi.org/10.1016/j.jsps.2015.03.013
  • Assaad, H. I., Zhou, L., Carroll, R. J., & Wu, G. (2014). Rapid publication-ready MS-Word tables for one-way ANOVA. SpringerPlus, 3, 474–478. https://doi.org/10.1186/2193-1801-3-474
  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Analytical Biochemistry, 239, 7–76. https://doi.org/10.1039/c6ay01739h
  • Bharti, S. K., Kumar, A., Sharma, N. K., Krishnan, S., Gupta, K., & Padamdeo, S. R. (2012). Antidiabetic effect of aqueous extract of Withania coagulans flower in Poloxamer-407 induced type 2 diabetic rats. Journal of Medicinal Plants Research, 6(45), 5706–5713. https://doi.org/10.5897/JMPR12.646
  • Brahmachari, G., Basak, A., O’Reilly, P., Ozed-Williams, B., & Basak, S. (2017). Small molecule phytocompounds as promoters of LDL-receptor and PCSK9 inhibition: Potential role as non-statin based cardio-protective agents. In Cardioprotective natural products (pp. 277–318). https://doi.org/10.1142/9789813231160_0008
  • Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52(C), 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6
  • Campbell, J. E., & Drucker, D. J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabolism, 17(6), 819–837. https://doi.org/10.1016/j.cmet.2013.04.008
  • Ceriello, A. (2000). Oxidative stress and glycemic regulation. Metabolism: Clinical and Experimental, 49(2 SUPPL. 1), 27–29. https://doi.org/10.1016/S0026-0495(00)80082-7
  • Chakrabarti, R., Bhavtaran, S., Narendra, P., Varghese, N., Vanchhawng, L., Mohamed Sham Shihabudeen, H., & Thirumurgan, K. (2011). Dipeptidyl peptidase- IV inhibitory activity of Berberis aristata. Natural Products, 4(May 2014), 158–163. www.JournalofNaturalProducts.Com
  • Furman, B. L. (2021). Streptozotocin-induced diabetic models in mice and rats. Current Protocols, 1(4), 1–21. https://doi.org/10.1002/cpz1.78
  • Giovannini, P., Howes, M. J. R., & Edwards, S. E. (2016). Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. Journal of Ethnopharmacology, 184, 58–71. https://doi.org/10.1016/j.jep.2016.02.034
  • Goldblith, S. A., & Proctor, B. E. (1950). Photometric determination of catalase activity. The Journal of Biological Chemistry, 187(2), 705–709.
  • Gottfried, S. P., & Rosenberg, B. (1973). Improved manual spectrophotometric procedure for determination of serum triglycerides. Clinical Chemistry, 19(9), 1077–1078. https://doi.org/10.1093/clinchem/19.9.1077
  • Goyal, M. (2015). Traditional plants used for the treatment of diabetes mellitus in Sursagar constituency, Jodhpur, Rajasthan - An ethnomedicinal survey. Journal of Ethnopharmacology, 174, 364–368. https://doi.org/10.1016/j.jep.2015.08.047
  • Guyot, H., Detilleux, J., Lebreton, P., Garnier, C., Bonvoisin, M., Rollin, F., & Sandersen, C. (2017). Comparison of various indices of energy metabolism in recumbent and healthy dairy cows. PloS One, 12(1), e0169716. https://doi.org/10.1371/journal.pone.0169716
  • Halban, P. A., Polonsky, K. S., Bowden, D. W., Hawkins, M. A., Ling, Cha. r. lotte., Mather, K. J., Powers, A. C., Rhodes, C. J., Sussel, L., & Weir, G. C. (2014). b-Cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. Diabetes Care, 37(6), 1751–1758. https://doi.org/10.2337/dc14-0396
  • Hemalatha, S., Wahi, A. K., Singh, P. N., & Chansouria, J. P. N. (2004). Hypoglycemic activity of Withania coagulans Dunal in streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 93(2-3), 261–264. https://doi.org/10.1016/j.jep.2004.03.043
  • Hoda, Q., Ahmad, S., Akhtar, M., Najmi, A. K., Pillai, K. K., & Ahmad, S. J. (2010). Antihyperglycaemic and antihyperlipidaemic effect of poly-constituents, in aqueous and chloroform extracts, of Withania coagulans Dunal in experimental type 2 diabetes mellitus in rats. Human & Experimental Toxicology, 29(8), 653–658. https://doi.org/10.1177/0960327109359638
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Ishak, S., Aris, S., Halim, K., Ali, M., Leow, T., Kamarudin, N., Masomian, M., & Rahman, R. (2017). Molecular dynamic simulation of space and earth-grown crystal structures of thermostable T1 lipase geobacillus zalihae revealed a better structure. Molecules, 22(10), 1574–1513. https://doi.org/10.3390/molecules22101574
  • Iung, B., Kappetein, P., Iung, B., & Kappetein, P. (2020). AVMA guidelines for the euthanasia of animals. 2020 edition. In ESC CardioMed. https://doi.org/10.1093/med/9780198784906.003.0764
  • Kagal, U., Angadi, N., & Matule, S. (2017). Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: An experimental study. International Journal of Applied & Basic Medical Research, 7(1), 26–31. https://doi.org/10.4103/2229-516X.198516
  • Kaur, J., Singla, R., & Jaitak, V. (2018). In silico study of flavonoids as DPP-4 and α-glucosidase inhibitors. Letters in Drug Design and Discovery, 15(6), 1–9. https://doi.org/10.2174/1570180814666170915162232
  • Keskes, H., Belhadj, S., Jlail, L., El Feki, A., Damak, M., Sayadi, S., & Allouche, N. (2017). LC-MS-MS and GC-MS analyses of biologically active extracts and fractions from Tunisian juniperus phoenice leaves. Pharmaceutical Biology, 55(1), 88–95. https://doi.org/10.1080/13880209.2016.1230139
  • Kumar, A. (2016). Differentiating incretin-based therapies: Progress and promise of GLP-1 receptor agonists. Therapeutic of Type 2 Diabetes, 1(3), 405–409. https://doi.org/10.1021/jm500810s
  • Lal, K., Purohit, A., & Ram, H. (2017). Glucose homeostatic and pancreas protective potential of tecomella undulata root extract in streptozotocin-induced diabetic rats. Asian Journal of Pharmaceutical and Clinical Research, 10(6), 292–297. https://doi.org/10.22159/ajpcr.2017.v10i6.17997
  • Lankatillake, C., Huynh, T., & Dias, D. A. (2019). Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods, 15(1), 1–35. https://doi.org/10.1186/s13007-019-0487-8
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & R, R. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Maher, S., Choudhary, M. I., Saleem, F., Rasheed, S., Waheed, I., Halim, S. A., Azeem, M., Abdullah, I., Bin, Froeyen, M., Mirza, M. U., & Ahmad, S. (2020). Isolation of antidiabetic withanolides from withania coagulans dunal and their in vitro and in silico validation. Biology, 9(8), 197–113. https://doi.org/10.3390/biology9080197
  • Majeed, M., Majeed, S., Mundkur, L., Nagabhushanam, K., Arumugam, S., Beede, K., & Ali, F. (2020). Standardized Emblica officinalis fruit extract inhibited the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase-4 and displayed antioxidant potential. Journal of the Science of Food and Agriculture, 100(2), 509–516. https://doi.org/10.1002/jsfa.10020
  • Martínez, B. B., Pereira, A. C. C., Muzetti, J. H., Telles, F., de, P., Mundim, F. G. L., & Teixeira, M. A. (2016). Experimental model of glucocorticoid-induced insulin resistance. Acta Cirurgica Brasileira, 31(10), 645–649. https://doi.org/10.1590/S0102-865020160100000001
  • Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., & Ribes, G. (1998). Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes, 47(2), 224–229. https://doi.org/10.2337/diab.47.2.224
  • Matthews, D. R., Hosker, J. P., Rudenski, a S., Naylor, B. a., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419. https://doi.org/10.1007/BF00280883
  • Mitchell, R. J. (1973). Improved method for specific determination of creatinine in serum and urine. Clinical Chemistry, 19(4), 408–410. https://doi.org/10.1093/clinchem/19.4.408
  • Mohammadhassan, R., Fallahi, S., & Mohammadalipour, Z. (2020). ADMET and pharmaceutical activity analysis of caffeic acid diversities by in silico tools. Letters in Applied NanoBioScience, 9(1), 840–848.
  • Monika, G., Sarbjot, S., & Punam, G. (2009). Dipeptidyl peptidase-4 inhibitors: A new approach in diabetes treatment. International Journal of Drug Development & Research, 1(1), 146–156.
  • Moshides, J. S. (1987). Kinetic enzymatic method for automated determination of HDL cholesterol in plasma. Journal of Clinical Chemistry and Clinical Biochemistry. Zeitschrift Fur Klinische Chemie Und Klinische Biochemie, 25(9), 583–588. https://doi.org/10.1515/cclm.1987.25.9.583
  • Nandi, A., & Chatterjee, I. B. (1988). Assay of superoxide dismutase activity in animal tissues. Journal of Biosciences, 13(3), 305–315. https://doi.org/10.1007/BF02712155
  • Nanjan, M. J., Mohammed, M., Prashantha Kumar, B. R., & Chandrasekar, M. J. N. (2018). Thiazolidinediones as antidiabetic agents: A critical review. Bioorganic Chemistry, 77, 548–567. https://doi.org/10.1016/j.bioorg.2018.02.009
  • Newsholme, P., Rowlands, J., Rose’meyer, R., & Cruzat, V. (2022). Metabolic adaptions/reprogramming in islet beta-cells in response to physiological stimulators—what are the consequences. Antioxidants, 11(1), 108–118. https://doi.org/10.3390/antiox11010108
  • Patwardhan, B., & Mashelkar, R. A. (2009). Traditional medicine-inspired approaches to drug discovery: Can Ayurveda show the way forward? Drug Discovery Today, 14(15–16), 804–811. https://doi.org/10.1016/j.drudis.2009.05.009
  • Prabhakar, P. K., & Doble, M. (2011). Mechanism of action of natural products used in the treatment of diabetes mellitus. Chinese Journal of Integrative Medicine, 17(8), 563–574. https://doi.org/10.1007/s11655-011-0810-3
  • Premilovac, D., Gasperini, R. J., Sawyer, S., West, A., Keske, M. A., Taylor, B. V., & Foa, L. (2017). A new method for targeted and sustained induction of type 2 diabetes in rodents. Scientific Reports, 7(1) https://doi.org/10.1038/s41598-017-14114-4
  • Rahman, I., Kode, A., & Biswas, S. K. (2006). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols, 1(6), 3159–3165. https://doi.org/10.1038/nprot.2006.378
  • Ram, H., Krishna, A., Kashyap, P., & Kumar, S. (2019). Amelioration in insulin resistance and β-cell function by DPP-4 inhibition potential of trigonella foenum seed extract in type-2 diabetic rats. Indian Drugs, 56(11), 47–53.
  • Ram, H., Kumar, P., Purohit, A., Kashyap, P., Kumar, S., Kumar, S., Singh, G., Alqarawi, A. A., Hashem, A., Abd-Allah, E. F., Al-Arjani, A. B. F., & Singh, B. P. (2021). Improvements in HOMA indices and pancreatic endocrinal tissues in type 2-diabetic rats by DPP-4 inhibition and antioxidant potential of an ethanol fruit extract of Withania coagulans. Nutrition and Metabolism, 18(1), 1–17. https://doi.org/10.1186/s12986-021-00547-2
  • Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28(1), 56–63. https://doi.org/10.1093/ajcp/28.1.56
  • Rudnitskaya, A., Török, B., & Török, M. (2010). Molecular docking of enzyme inhibitors. Biochemistry and Molecular Biology Education : A Bimonthly Publication of the International Union of Biochemistry and Molecular Biology, 38(4), 261–265. https://doi.org/10.1002/bmb.20392
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9(August), 923–916. https://doi.org/10.3389/fphar.2018.00923
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sharma, S., Padhi, S., Kumari, M., Patnaik, S., & Sahoo, D. (2022). Antioxidant potential of selected wild edible leafy vegetables of sikkim himalayan region: effects of cooking methods and gastrointestinal digestion on activity. Frontiers in Nutrition, 9(April), 861347–861310. https://doi.org/10.3389/fnut.2022.861347
  • Shukla, K., Dikshit, P., Shukla, R., & Gambhir, J. K. (2012). The aqueous extract of withania coagulans fruit partially reverses nicotinamide/streptozotocin-induced diabetes mellitus in rats. Journal of Medicinal Food, 15(8), 718–725. https://doi.org/10.1089/jmf.2011.1829
  • Shukla, K., Dikshit, P., Tyagi, M. K., Shukla, R., & Gambhir, J. K. (2012). Ameliorative effect of Withania coagulans on dyslipidemia and oxidative stress in nicotinamide-streptozotocin induced diabetes mellitus. Food and Chemical Toxicology, 50(10), 3595–3599. https://doi.org/10.1016/j.fct.2012.07.026
  • Singh, A. K., Jatwa, R., Purohit, A., & Ram, H. (2017). Synthetic and phytocompounds based dipeptidyl peptidase-IV (DPP-IV) inhibitors for therapeutics of diabetes. Journal of Asian Natural Products Research, 19(10), 1036–1045. https://doi.org/10.1080/10286020.2017.1307183
  • Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2022). Pathways and type 2 diabetes. Molecules, 27(3), 950–969. https://doi.org/10.3390/molecules27030950
  • Song, I., Muller, C., Louw, J., & Bouwens, L. (2015). Regulating the beta cell mass as a strategy for type-2 diabetes treatment. Current Drug Targets, 16(5), 516–524. https://doi.org/10.2174/1389450116666150204113928
  • Srinivasan, S., & Muruganathan, U. (2016). Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Chemico-Biological Interactions, 250, 38–46. https://doi.org/10.1016/j.cbi.2016.02.020
  • Steele, T. H., & Mansdorfer, M. C. (1970). An automated ezymatic spectrophotometric method for the determination of uric acid. American Journal of Clinical Pathology, 53(1), 116–120. https://doi.org/10.1093/ajcp/53.1.116
  • van Dijk, T. H., Laskewitz, A. J., Grefhorst, A., Boer, T. S., Bloks, V. W., Kuipers, F., Groen, A. K., & Reijngoud, D. J. (2013). A novel approach to monitor glucose metabolism using stable isotopically labelled glucose in longitudinal studies in mice. Laboratory Animals, 47(2), 79–88. https://doi.org/10.1177/0023677212473714
  • Venkatesan, M., Babu, P. B. R., Sankar, P., Rajasulochana, P., & Lakshmi, T. J. (2012). Identification of novel dipeptidyl peptidase IV inhibitor using catalyst pharmacophore model. Middle - East Journal of Scientific Research, 12(12), 1766–1770. https://doi.org/10.5829/idosi.mejsr.2012.12.12.1204
  • Vujovic, A., Kotur-Stevuljevic, J., Spasic, S., Bujisic, N., Martinovic, J., Vujovic, M., Spasojevic-Kalimanovska, V., Zeljkovic, A., & Pajic, D. (2010). Evaluation of different formulas for LDL-C calculation. Lipids in Health and Disease, 9, 1–9. https://doi.org/10.1186/1476-511X-9-27
  • Walters, W. P. (2012). Going further than Lipinski’s rule in drug design. Expert Opinion on Drug Discovery, 7(2), 99–107. https://doi.org/10.1517/17460441.2012.648612
  • Wybenga, D. R., Di Giorgio, J., & Pileggi, V. J. (1971). Manual and automated methods for urea nitrogen measurement in whole serum. Clinical Chemistry, 17(9), 891–895. https://doi.org/10.1093/clinchem/17.9.891
  • Yalow, R. S., & Berson, S. a (1959). Assay of plasma insulin in human subjects by immunological methods. Nature, 184(4699), 1648–1649. https://doi.org/10.1038/1841648b0
  • Yeshi, K., Crayn, D., Ritmejerytė, E., & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic product development. Molecules, 27(1), 313–331. https://doi.org/10.3390/molecules27010313
  • Zhu, Z. J., Schultz, A. W., Wang, J., Johnson, C. H., Yannone, S. M., Patti, G. J., & Siuzdak, G. (2013). Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nature Protocols, 8(3), 451–460. https://doi.org/10.1038/nprot.2013.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.