278
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Structural aspects of SARS-CoV-2 mutations: Implications to plausible infectivity with ACE-2 using computational modeling approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6518-6533 | Received 07 Dec 2021, Accepted 28 Jul 2022, Published online: 08 Aug 2022

References

  • Adhikari, P., Jawad, B., Podgornik, R., & Ching, W. Y. (2022). Mutations of Omicron variant at the interface of the receptor domain motif and human angiotensin-converting enzyme-2. International Journal of Molecular Sciences, 23(5), 2870. https://doi.org/10.3390/ijms23052870
  • Alai, S., Gujar, N., Joshi, M., Gautam, M., & Gairola, S. (2021). Pan-India novel coronavirus SARS-CoV-2 genomics and global diversity analysis in spike protein. Heliyon, 7(3), e06564. https://doi.org/10.1016/j.heliyon.2021.e06564
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Beyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 40(5), 905–919. https://doi.org/10.1007/s10096-020-04138-6
  • Bisong E. (2019). Google colaboratory. Building machine learning and deep learning models on Google Cloud Platform (pp. 59–64). SpringerLink. https://doi.org/10.1007/978-1-4842-4470-8_7
  • Bosso, M., Thanaraj, T. A., Abu-Farha, M., Alanbaei, M., Abubaker, J., & Al-Mulla, F. (2020). The two faces of ACE2: The role of ACE2 receptor and its polymorphisms in hypertension and COVID-19. Molecular Therapy. Methods & Clinical Development, 18(September), 321–327. https://doi.org/10.1016/j.omtm.2020.06.017
  • Cao, L., & Wang, X. (2021). The structure of FC08 Fab-hA.CE2-RBD complex. https://doi.org/10.2210/pdb7DX4/pdb
  • Cardona-Ospina, J. A., Rojas-Gallardo, D. M., Garzón-Castaño, S. C., Jiménez-Posada, E. V., & Rodríguez-Morales, A. J. (2021). Phylodynamic analysis in the understanding of the current COVID-19 pandemic and its utility in vaccine and antiviral design and assessment. Human Vaccines and Immunotherapeutics, 00(0), 1–8. https://doi.org/10.1080/21645515.2021.1880254
  • Carter, R. W., & Sanford, J. C. (2012). A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918. Theoretical Biology & Medical Modelling, 9, 42. https://doi.org/10.1186/1742-4682-9-42
  • Cavani, M., Riofrío, W. A., & Arciniega, M. (2022). Molecular dynamics and MM-PBSA analysis of the SARS-CoV-2 Gamma variant in complex with the hACE-2 receptor. Molecules (Basel, Switzerland), 27(7), 2370. https://doi.org/10.3390/molecules27072370
  • Dassault Systèmes. (2016). BIOVIA discovery studio dassault. https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/
  • Dejnirattisai, W., Zhou, D., Supasa, P., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H. M., Tuekprakhon, A., Nutalai, R., Wang, B., López-Camacho, C., Slon-Campos, J., Walter, T. S., Skelly, D., Costa Clemens, S. A., Naveca, F. G., Nascimento, V., Nascimento, F., … Screaton, G. R. (2021). Antibody evasion by the P.1 strain of SARS-CoV-2. Cell, 184(11), 2939–2954.e9. https://doi.org/10.1016/j.cell.2021.03.055
  • Devaux, C. A., Rolain, J. M., & Raoult, D. (2020). ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology, and Infection = Wei Mian yu Gan Ran za Zhi, 53(3), 425–435. https://doi.org/10.1016/j.jmii.2020.04.015
  • Dhillon, P., Breuer, M., & Hirst, N. (2020). COVID-19 breakthroughs: separating fact from fiction. The FEBS Journal, 287(17), 3612–3632. https://doi.org/10.1111/febs.15442
  • Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., & Wang, H. (2020). The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Frontiers in Immunology, 11(October), 576622–576612. https://doi.org/10.3389/fimmu.2020.576622
  • EMBL-EBI. (2013). PDBsum generate. http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
  • Ferrareze, P. A. G., Franceschi, V. B., Mayer, A. D. M., Caldana, G. D., Zimerman, R. A., & Thompson, C. E. (2021). E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infection, Genetics and Evolution, 93(51), 104941. https://doi.org/10.1016/j.meegid.2021.104941
  • Feschotte, C., & Gilbert, C. (2012). Endogenous viruses: Insights into viral evolution and impact on host biology. Nature Reviews Genetics, 13(4), 283–296. https://doi.org/10.1038/nrg3199
  • Fung, S. Y., Yuen, K. S., Ye, Z. W., Chan, C. P., & Jin, D. Y. (2020). A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: Lessons from other pathogenic viruses. Emerging Microbes & Infections, 9(1), 558–570. https://doi.org/10.1080/22221751.2020.1736644
  • Gan, H. H., Zinno, J., Piano, F., & Gunsalus, K. C. (2022). Omicron spike protein has a positive electrostatic surface that promotes ACE2 recognition and antibody escape. Frontiers in Virology, 2, 43. https://doi.org/10.3389/fviro.2022.894531
  • Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J. C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circulation Research, 126(10), 1456–1474. https://doi.org/10.1161/CIRCRESAHA.120.317015
  • Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., Shahpasand, K., Saboury, A. A., & Falahati, M. (2021). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure & Dynamics, 39(8), 3025–3033. https://doi.org/10.1080/07391102.2020.1754293
  • Huang, Y., Yang, C., Xu, X., feng, Xu, W., & Liu, S. w (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jafary, F., Jafari, S., & Ganjalikhany, M. R. (2021). In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-86380-2
  • Jagger, B. W., Wise, H. M., Kash, J. C., Walters, K. A., Wills, N. M., Xiao, Y. L., Dunfee, R. L., Schwartzman, L. M., Ozinsky, A., Bell, G. L., Dalton, R. M., Lo, A., Efstathiou, S., Atkins, J. F., Firth, A. E., Taubenberger, J. K., & Digard, P. (2012). An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science (New York, N.Y.), 337(6091), 199–204. https://doi.org/10.1126/science.1222213
  • Khan, A., Zia, T., Suleman, M., Khan, T., Ali, S. S., Abbasi, A. A., Mohammad, A., & Wei, D.-Q. (2021). Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 236(10), 7045–7057. https://doi.org/10.1002/jcp.30367
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., McDanal, C., Perez, L. G., Tang, H., … Wyles, M. D. (2020). Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 182(4), 812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043
  • Kurkcuoglu, Z., & Bonvin, A. M. J. J. (2020). Pre- and post-docking sampling of conformational changes using ClustENM and HADDOCK for protein-protein and protein-DNA systems. Proteins, 88(2), 292–306. https://doi.org/10.1002/prot.25802
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Landry, J. P., Fei, Y., & Zhu, X. (2011). High throughput, label-free screening small molecule compound libraries for protein-ligands using combination of small molecule microarrays and a special ellipsometry-based optical scanner. International Drug Discovery, 2012(1), 8. /pmc/articles/PMC3271728/
  • Landry, J. P., Fei, Y., Zhu, X., Ke, Y., Yu, G., & Lee, P. (2013). Discovering small molecule ligands of vascular endothelial growth factor that block VEGF-KDR binding using label-free microarray-based assays. Assay and Drug Development Technologies, 11(5), 326–332. https://doi.org/10.1089/adt.2012.485
  • Lazniewski, M., Dawson, W. K., Szczepinska, T., & Plewczynski, D. (2018). The structural variability of the influenza A hemagglutinin receptor-binding site. Briefings in Functional Genomics, 17(6), 415–427. https://doi.org/10.1093/bfgp/elx042
  • Liu, H., & Hou, T. (2016). CaFE: A tool for binding affinity prediction using end-point free energy methods. Bioinformatics (Oxford, England), 32(14), 2216–2218. https://doi.org/10.1093/bioinformatics/btw215
  • MacLean, O. A., Lytras, S., Weaver, S., Singer, J. B., Boni, M. F., Lemey, P., Kosakovsky Pond, S. L., & Robertson, D. L. (2021). Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen. PLOS Biology, 19(3), e3001115–20. https://doi.org/10.1371/journal.pbio.3001115
  • McAuley, J. L., Zhang, K., & McCullers, J. A. (2010). The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. Journal of Virology, 84(1), 558–564. https://doi.org/10.1128/JVI.01785-09
  • Mittal, A., Manjunath, K., Ranjan, R. K., Kaushik, S., Kumar, S., & Verma, V. (2020). COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathogens, 16(8), e1008762. https://doi.org/10.1371/journal.ppat.1008762
  • Nelson, G., Buzko, O., Patricia, S., Niazi, K., Rabizadeh, S., & Soon-Shiong, P. (2021). Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the 1 combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an esc. BioRxiv. https://doi.org/10.1101/2021.01.13.426558
  • Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., & Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24(1), 422. https://doi.org/10.1186/s13054-020-03120-0
  • Nie, C., Sahoo, A. K., Netz, R. R., Herrmann, A., Ballauff, M., & Haag, R. (2022). Charge Matters: Mutations in Omicron Variant Favor Binding to Cells. Chembiochem, 23(6), https://doi.org/10.1002/cbic.202100681
  • Ortega, J. T., Pujol, F. H., Jastrzebska, B., & Rangel, H. R. (2021). Mutations in the sars-cov-2 spike protein modulate the virus affinity to the human ace2 receptor, an in silico analysis. EXCLI Journal, 20, 585–600. https://doi.org/10.17179/excli2021-3471
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Rockett, R. J., Arnott, A., Lam, C., Sadsad, R., Timms, V., Gray, K.-A., Eden, J.-S., Chang, S., Gall, M., Draper, J., Sim, E. M., Bachmann, N. L., Carter, I., Basile, K., Byun, R., O'Sullivan, M. V., Chen, S. C.-A., Maddocks, S., Sorrell, T. C., … Sintchenko, V. (2020). Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nature Medicine, 26(9), 1398–1404. https://doi.org/10.1038/s41591-020-1000-7
  • Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2018). DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Rodrigues, J. P. G. L., M., Teixeira, J. M. C., Trellet, M., & Bonvin, A. M. J. J. (2018). pdb-tools: A swiss army knife for molecular structures. F1000Research, 7, 1961. https://doi.org/10.12688/F1000RESEARCH.17456.1)[PMC][30705752
  • Shao, W., Li, X., Goraya, M. U., Wang, S., & Chen, J. L. (2017). Evolution of Influenza A virus by mutation and re-assortment. International Journal of Molecular Sciences, 18(8), 1650. https://doi.org/10.3390/ijms18081650
  • Sharma, B., Shahanshah, M. F. H., Gupta, S., & Gupta, V. (2021). Recent advances in the diagnosis of COVID-19: A bird’s eye view. Expert Review of Molecular Diagnostics, 21(5), 475–417. https://doi.org/10.1080/14737159.2021.1874354
  • Singh, S., Gopi, P., & Pandya, P. (2022). Structural aspects of formetanate hydrochloride binding with human serum albumin using spectroscopic and molecular modeling techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 281, 121618. https://doi.org/10.1016/j.saa.2022.121618
  • Supasa, P., Zhou, D., Dejnirattisai, W., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H. M., Nutalai, R., Tuekprakhon, A., Wang, B., Paesen, G. C., Slon-Campos, J., López-Camacho, C., Hallis, B., Coombes, N., Bewley, K. R., Charlton, S., Walter, T. S., … Screaton, G. R. (2021). Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, 184(8), 2201–2211.e7. https://doi.org/10.1016/j.cell.2021.02.033
  • Wu, L., Zhou, L., Mo, M., Liu, T., Wu, C., Gong, C., Lu, K., Gong, L., Zhu, W., & Xu, Z. (2022). SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. Signal Transduction and Targeted Therapy, 2022 7:17(1), 8–3. https://doi.org/10.1038/s41392-021-00863-2
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yesudhas, D., Srivastava, A., & Gromiha, M. M. (2021). COVID-19 outbreak: History, mechanism, transmission, structural studies and therapeutics. Infection, 49(2), 199–213. https://doi.org/10.1007/s15010-020-01516-2
  • Zhang, L., Cao, L., Gao, X.-S., Zheng, B.-Y., Deng, Y.-Q., Li, J.-X., Feng, R., Bian, Q., Guo, X.-L., Wang, N., Qiu, H.-Y., Wang, L., Cui, Z., Ye, Q., Chen, G., Lu, K.-K., Chen, Y., Chen, Y.-T., Pan, H.-X., … Zhu, F.-C. (2021a). A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. National Science Review, 8(8), nwab053. https://doi.org/10.1093/nsr/nwab053
  • Zhang, Z., Zhang, Y., Liu, K., Li, Y., Lu, Q., Wang, Q., Zhang, Y., Wang, L., Liao, H., Zheng, A., Ma, S., Fan, Z., Li, H., Huang, W., Bi, Y., Zhao, X., Wang, Q., Gao, G. F., Xiao, H., … Sun, Y. (2021b). The molecular basis for SARS-CoV-2 binding to dog ACE2. Nature Communications, 12(1), 4195. https://doi.org/10.1038/s41467-021-24326-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.