194
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spectrin: an alternate target for cytoskeletal drugs

, , &
Pages 6534-6545 | Received 30 Dec 2021, Accepted 28 Jul 2022, Published online: 22 Aug 2022

References

  • Aatif, M., Shah, A., Priyadarshini, M., Farhan, M., & Bano, B. (2020). Probing the structural interactions between methotrexate and dexamethasone with muscle cystatin: a biophysical study. Journal of Biomolecular Structure & Dynamics, 38(10), 2955–2964. https://doi.org/10.1080/07391102.2019.1653374
  • Abdelhameed, A. S., Alam, P., & Khan, R. H. (2016). Binding of Janus kinase inhibitor tofacitinib with human serum albumin: multi-technique approach. Journal of Biomolecular Structure & Dynamics, 34(9), 2037–2044. https://doi.org/10.1080/07391102.2015.1104522
  • Allingham, J. S., Klenchin, V. A., & Rayment, I. (2006). Actin-targeting natural products: structures, properties and mechanisms of action. Cellular and Molecular Life Sciences: CMLS, 63(18), 2119–2134. https://doi.org/10.1007/s00018-006-6157-9
  • Amagata, T., Johnson, T. A., Cichewicz, R. H., Tenney, K., Mooberry, S. L., Media, J., Edelstein, M., Valeriote, F. A., & Crews, P. (2008). Interrogating the bioactive pharmacophore of the latrunculin chemotype by investigating the metabolites of two taxonomically unrelated sponges. Journal of Medicinal Chemistry, 51(22), 7234–7242. https://doi.org/10.1021/jm8008585
  • Arnal, I., & Wade, R. H. (1995). How does taxol stabilize microtubules? Current Biology: CB, 5(8), 900–908.
  • Bairoch, A., & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research, 28(1), 45–48. https://doi.org/10.1093/nar/28.1.45
  • Banerjee, S., Chakrabarti, G., & Bhattacharyya, B. (1997). Colchicine binding to tubulin monomers: A mechanistic study. Biochemistry, 36(18), 5600–5606. https://doi.org/10.1021/bi962648n
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bhattacharyya, B., Panda, D., Gupta, S., & Banerjee, M. (2008). Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Medicinal Research Reviews, 28(1), 155–183. https://doi.org/10.1002/med.20097
  • Bose, D., & Chakrabarti, A. (2019). Localizing the chaperone activity of erythroid spectrin. Cytoskeleton (Hoboken, NJ), 76(6), 383–397. https://doi.org/10.1002/cm.21556
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Braet, F., Soon, L., Vekemans, K., Thordarson, P., & Spector, I. (2008). Actin-binding drugs: An elegant tool to dissect subcellular processes in endothelial and cancer cells BT - Actin-binding proteins and disease. (C. G. dos Remedios & D. Chhabra, Eds.) (pp. 37–49). Springer.
  • Brown, S. S., & Spudich, J. A. (1981). Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. The Journal of Cell Biology, 88(3), 487–491. https://doi.org/10.1083/jcb.88.3.487
  • Buey, R. M., Barasoain, I., Jackson, E., Meyer, A., Giannakakou, P., Paterson, I., Mooberry, S., Andreu, J. M., & Díaz, J. F. (2005). Microtubule interactions with chemically diverse stabilizing agents: Thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chemistry & Biology, 12(12), 1269–1279. https://doi.org/10.1016/j.chembiol.2005.09.010
  • Casella, J. F., Flanagan, M. D., & Lin, S. (1981). Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature, 293(5830), 302–305. https://doi.org/10.1038/293302a0
  • Castellan, G. W. (1971). Physical chemistry. Addison-Wesley Pub. Co.
  • Chakrabarti, A., Kelkar, D. A., & Chattopadhyay, A. (2006). Spectrin organization and dynamics: New insights. Bioscience Reports, 26(6), 369–386. https://doi.org/10.1007/s10540-006-9024-x
  • Combeau, C., Commercon, A., Mioskowski, C., Rousseau, B., Aubert, F., & Goeldner, M. (1994). Predominant Labeling of.beta.- over.alpha.-Tubulin from porcine brain by aphotoactivatable taxoid derivative. Biochemistry, 33(21), 6676–6683. https://doi.org/10.1021/bi00187a038
  • Cooper, J. A. (1987). Effects of cytochalasin and phalloidin on actin. The Journal of Cell Biology, 105(4), 1473–1478. https://doi.org/10.1083/jcb.105.4.1473
  • Coué, M., Brenner, S. L., Spector, I., & Korn, E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Letters, 213(2), 316–318. https://doi.org/10.1016/0014-5793(87)81513-2
  • Das, D., Pramanik, U., Patra, M., Banerjee, M., & Chakrabarti, A. (2016). Differential interactions of imatinib mesylate with the membrane skeletal protein spectrin and hemoglobin. RSC Advances, 6(60), 55203–55210. https://doi.org/10.1039/C5RA27276A
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Dorleans, A., Gigant, B., Ravelli, R. B. G., Mailliet, P., Mikol, V., & Knossow, M. (2009). Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 13775–13779. https://doi.org/10.1073/pnas.0904223106
  • Dorleans, A., Knossow, M., & Gigant, B. (2007). Studying drug-tubulin interactions by x-ray crystallography. Methods in Molecular Medicine, 137, 235–243.
  • Dumontet, C., & Jordan, M. A. (2010). Microtubule-binding agents: a dynamic field of cancer therapeutics. Nature Reviews. Drug Discovery, 9(10), 790–803. https://doi.org/10.1038/nrd3253
  • Dutta, S., Basak, A., & Dasgupta, S. (2010). Synthesis and ribonuclease A inhibition activity of resorcinol and phloroglucinol derivatives of catechin and epicatechin: Importance of hydroxyl groups. Bioorganic & Medicinal Chemistry, 18(17), 6538–6546. https://doi.org/10.1016/j.bmc.2010.06.077
  • El Sayed, K. A., Youssef, D. T. A., & Marchetti, D. (2006). Bioactive natural and semisynthetic latrunculins. Journal of Natural Products, 69(2), 219–223. https://doi.org/10.1021/np050372r
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Flanagan, M. D., & Lin, S. (1980). Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. The Journal of Biological Chemistry, 255(3), 835–838.
  • Foissner, I., & Wasteneys, G. O. (2007). Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells. Plant & Cell Physiology, 48(4), 585–597. https://doi.org/10.1093/pcp/pcm030
  • Furstner, A., Kirk, D., Fenster, M. D. B., Aissa, C., De Souza, D., Nevado, C., Tuttle, T., Thiel, W., & Muller, O. (2007). Latrunculin analogues with improved biological profiles by “diverted total synthesis”: preparation, evaluation, and computational analysis. Chemistry (Weinheim an der Bergstrasse, Germany), 13(1), 135–149. https://doi.org/10.1002/chem.200601136
  • Ganesh, T., Guza, R. C., Bane, S., Ravindra, R., Shanker, N., Lakdawala, A. S., Snyder, J. P., & Kingston, D. G. I. (2004). The bioactive Taxol conformation on β-tubulin: Experimental evidence from highly active constrained analogs. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10006–10011. https://doi.org/10.1073/pnas.0403459101
  • Garland, D. L. (1978). Kinetics and mechanism of colchicine binding to tubulin: evidence for ligand-induced conformational changes. Biochemistry, 17(20), 4266–4272. https://doi.org/10.1021/bi00613a024
  • Ghosh, K. S., Sen, S., Sahoo, B. K., & Dasgupta, S. (2009). A spectroscopic investigation into the interactions of 3′-O-carboxy esters of thymidine with bovine serum albumin. Biopolymers, 91(9), 737–744. https://doi.org/10.1002/bip.21220
  • Hebert, D. N., & Carruthers, A. (1992). Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1. The Journal of Biological Chemistry, 267(33), 23829–23838.
  • Helal, M. A., Khalifa, S., & Ahmed, S. (2013). Differential Binding of Latrunculins to G-Actin: A Molecular Dynamics Study. Journal of Chemical Information and Modeling, 53(9), 2369–2375. https://doi.org/10.1021/ci400317j
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, E. B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Horwitz, S. B. (1992). Mechanism of action of taxol. Trends in Pharmacological Sciences, 13(4), 134–136.
  • Hubbard, S. J., & Thornton, J. M. (1993). ‘NACCESS’, computer program. London: Department of Biochemistry and Molecular Biology, University College.
  • Jacob, H. S. (1975). Effect of drugs on red cell membranes: Insights into normal red cell shape. Journal of Clinical Pathology. Supplement (Royal College of Pathologists), 9, 40–45.
  • Jacob, H., Amsden, T., & White, J. (1972). Membrane microfilaments of erythrocytes: Alteration in intact cells reproduces the hereditary spherocytosis syndrome. Proceedings of the National Academy of Sciences of the United States of America, 69(2), 471–474.
  • Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews. Cancer, 4(4), 253–265.
  • Karinch, A. M., Zimmer, W. E., & Goodman, S. R. (1990). The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. The Journal of Biological Chemistry, 265(20), 11833–11840.
  • Korsgren, C., & Lux, S. E. (2010). The carboxyterminal EF domain of erythroid α-spectrin is necessary for optimal spectrin-actin binding. Blood, 116(14), 2600–2607. https://doi.org/10.1182/blood-2009-12-260612
  • Kumar, N. (1981). Taxol-induced polymerization of purified tubulin. Mechanism of action. The Journal of Biological Chemistry, 256(20), 10435–10441.
  • Lakowicz, J. R. (2007). Principles of fluorescence spectroscopy. Springer US.
  • Lambeir, A., & Engelborghs, Y. (1981). A fluorescence stopped flow study of colchicine binding to tubulin. The Journal of Biological Chemistry, 256(7), 3279–3282.
  • Lehrer, S. S. (1971). Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry, 10(17), 3254–3263. https://doi.org/10.1021/bi00793a015
  • Li, Y., Chen, C., Zhang, C., Duan, J., Yao, H., & Wei, Q. (2017). Probing the binding interaction of AKR with human serum albumin by multiple fluorescence spectroscopy and molecular modeling. Journal of Biomolecular Structure & Dynamics, 35(6), 1189–1199. https://doi.org/10.1080/07391102.2016.1174622
  • Lin, S., & Snyder, C. E. (1977). High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport. The Journal of Biological Chemistry, 252(15), 5464–5471.
  • Lyu, S., & Wang, W. (2021). Spectroscopic methodologies and computational simulation studies on the characterization of the interaction between human serum albumin and astragalin. Journal of Biomolecular Structure & Dynamics, 39(8), 2959–2970. https://doi.org/10.1080/07391102.2020.1758213
  • MacLean-Fletcher, S., & Pollard, T. D. (1980). Mechanism of action of cytochalasin B on actin. Cell, 20(2), 329–341. https://doi.org/10.1016/0092-8674(80)90619-4
  • Maiti, R., Van Domselaar, G., Zhang, H., & Wishart, D. (2004). SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32(Web Server issue), W590-4. https://doi.org/10.1093/nar/gkh477
  • Majee, S., Dasgupta, D., & Chakrabarti, A. (1999). Interaction of the DNA-binding antitumor antibiotics, chromomycin and mithramycin with erythroid spectrin. European Journal of Biochemistry, 260(3), 619–626.
  • Manfredi, J. J., & Horwitz, S. B. (1984). Taxol: an antimitotic agent with a new mechanism of action. Pharmacology & Therapeutics, 25(1), 83–125. https://doi.org/10.1016/0163-7258(84)90025-1
  • Maniatis, T., Fritsch, E. F., & Sambrook, J. (1982). Molecular cloning. A laboratory manual. 545. Cold Spring Harbor Laboratory.
  • Marsch, G. A., Carlson, B. T., & Guengerich, F. P. (2018). 7,8-benzoflavone binding to human cytochrome P450 3A4 reveals complex fluorescence quenching, suggesting binding at multiple protein sites. Journal of Biomolecular Structure and Dynamics, 36(4), 841–860. 10.1080/07391102.2017.1301270
  • Massarotti, A., Coluccia, A., Silvestri, R., Sorba, G., & Brancale, A. (2012). The tubulin colchicine domain: A molecular modeling perspective. ChemMedChem, 7(1), 33–42. https://doi.org/10.1002/cmdc.201100361
  • Mavani, A., Ovung, A., Luikham, S., Kumar, G. S., Das, A., Ray, D., Aswal, V. K., & Bhattacharyya, J. (2022). Biophysical and molecular modeling evidences for the binding of sulfa molecules with hemoglobin. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2022.2057358
  • Mitra, A., & Sept, D. (2008). Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophysical Journal, 95(7), 3252–3258.
  • Mondal, M., & Chakrabarti, A. (2002). The tertiary amine local anesthetic dibucaine binds to the membrane skeletal protein spectrin. FEBS Letters, 532(3), 396–400. https://doi.org/10.1016/S0014-5793(02)03721-3
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Morris, P. G., & Fornier, M. N. (2008). Microtubule active agents: Beyond the taxane frontier. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 14(22), 7167–7172. https://doi.org/10.1158/1078-0432.CCR-08-0169
  • Morton, W. M., Ayscough, K. R., & McLaughlin, P. J. (2000). Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature Cell Biology, 2(6), 376–378. https://doi.org/10.1038/35014075
  • Nair, U. B., Joel, P. B., Wan, Q., Lowey, S., Rould, M. A., & Trybus, K. M. (2008). Crystal structures of monomeric actin bound to cytochalasin D. Journal of Molecular Biology, 384(4), 848–864. https://doi.org/10.1016/j.jmb.2008.09.082
  • Nigra, A. D., Santander, V. S., Dircio-Maldonado, R., Amaiden, M. R., Monesterolo, N. E., Flores-Guzmán, P., Muhlberger, T., Rivelli, J. F., Campetelli, A. N., Mayani, H., & Casale, C. H. (2017). Tubulin is retained throughout the human hematopoietic/erythroid cell differentiation process and plays a structural role in sedimentable fraction of mature erythrocytes. The International Journal of Biochemistry & Cell Biology, 91(Pt A), 29–36. https://doi.org/10.1016/j.biocel.2017.08.012
  • Noble, R. L., Beer, C. T., & Cutts, J. H. (1958). Role of chance observations in chemotherapy: Vinca Rosea*. Annals of the New York Academy of Sciences, 76(3), 882–894. https://doi.org/10.1111/j.1749-6632.1958.tb54906.x
  • Nunez, J., Fellous, A., Francon, J., & Lennon, A. M. (1979). Competitive inhibition of colchicine binding to tubulin by microtubule-associated proteins. Proceedings of the National Academy of Sciences of the United States of America, 76(1), 86–90.
  • Owellen, R. J., Owens, A. H., & Donigian, D. W. (1972). The binding of vincristine, vinblastine and colchicine to tubulin. Biochemical and Biophysical Research Communications, 47(4), 685–691. https://doi.org/10.1016/0006-291X(72)90546-3
  • Parness, J., & Horwitz, S. B. (1981). Taxol binds to polymerized tubulin in vitro. The Journal of Cell Biology, 91(2 Pt 1), 479–487. https://doi.org/10.1083/jcb.91.2.479
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pathak, S., Gupta, R., Parkar, H., Joshi, N., Nagotu, S., & Kale, A. (2021). The role of colchicine on actin polymerization dynamics: as a potent anti-angiogenic factor. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.1965911
  • Patra, M., Mitra, M., Chakrabarti, A., & Mukhopadhyay, C. (2014). Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies. Journal of Biomolecular Structure & Dynamics, 32(6), 852–865. https://doi.org/10.1080/07391102.2013.793212
  • Patra, M., Mukhopadhyay, C., & Chakrabarti, A. (2015). Probing conformational stability and dynamics of erythroid and nonerythroid Spectrin: Effects of Urea and Guanidine Hydrochloride. PLoS One, 10(1), e0116991. https://doi.org/10.1371/journal.pone.0116991
  • Pieper, U., Eswar, N., Braberg, H., Madhusudhan, M. S., Davis, F. P., Stuart, A. C., Mirkovic, N., Rossi, A., Marti-Renom, M. A., Fiser, A., Webb, B., Greenblatt, D., Huang, C. C., Ferrin, T. E., & Sali, A. (2004). MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Research, 32(Database issue), D217–D222.
  • Prota, A. E., Bargsten, K., Zurwerra, D., Field, J. J., Díaz, J. F., Altmann, K.-H., & Steinmetz, M. O. (2013). Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science (New York, NY), 339(6119), 587–590. https://doi.org/10.1126/science.1230582
  • Rai, S. S., & Wolff, J. (1996). Localization of the Vinblastine-binding site on β-Tubulin. The Journal of Biological Chemistry, 271(25), 14707–14711.
  • Rampal, A. L., Pinkofsky, H. B., & Jung, C. Y. (1980). Structure of cytochalasins and cytochalasin B binding sites in human erythrocyte membranes. Biochemistry, 19(4), 679–683. https://doi.org/10.1021/bi00545a011
  • Rao, S., Krauss, N. E., Heerding, J. M., Swindell, C. S., Ringel, I., Orr, G. A., & Horwitz, S. B. (1994). 3’-(p-azidobenzamido)taxol photolabels the N-terminal 31 amino acids of beta-tubulin. Journal of Biological Chemistry, 269(5), 3132–3134. https://doi.org/10.1016/S0021-9258(17)41836-9
  • Ren, T., Zhang, L., Wang, J., Song, C., Wang, R., & Chang, J. (2017). Study on the interaction of taiwaniaquinoids with FTO by spectroscopy and molecular modelling. Journal of Biomolecular Structure & Dynamics, 35(14), 3182–3193. https://doi.org/10.1080/07391102.2016.1249957
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Roy, A. S., Ghosh, P., & Dasgupta, S. (2016). Glycation of human serum albumin alters its binding efficacy towards the dietary polyphenols: a comparative approach. Journal of Biomolecular Structure & Dynamics, 34(9), 1911–1918. https://doi.org/10.1080/07391102.2015.1094749
  • Sahr, K. E., Laurila, P., Kotula, L., Scarpa, A. L., Coupal, E., Leto, T. L., Linnenbach, A. J., Winkelmann, J. C., Speicher, D. W., & Marchesi, V. T. (1990). The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. The Journal of Biological Chemistry, 265(8), 4434–4443.
  • Sandu, N., Popescu, A. I., & Chilom, C. G. (2021). Probing the interaction of fisetin with human serum transferrin via spectroscopic and molecular docking approaches. Journal of Biomolecular Structure and Dynamics, 1–7. https://doi.org/10.1080/07391102.2021.1934545
  • Scatchard, G. (1946). Physical chemistry of protein solutions. I. Derivation of the equations for the osmotic pressure1. Journal of the American Chemical Society, 68(11), 2315–2319. https://doi.org/10.1021/ja01215a054
  • Schiff, P. B., & Horwitz, S. B. (1980). Taxol stabilizes microtubules in mouse fibroblast cells. Proceedings of the National Academy of Sciences of the United States of America, 77(3), 1561–1565. https://doi.org/10.1073/pnas.77.3.1561
  • Schiff, P. B., Fant, J., & Horwitz, S. B. (1979). Promotion of microtubule assembly in vitro by taxol. Nature, 277(5698), 665–667. https://doi.org/10.1038/277665a0
  • Snyder, J. P., Nettles, J. H., Cornett, B., Downing, K. H., & Nogales, E. (2001). The binding conformation of Taxol in β-tubulin: A model based on electron crystallographic density. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5312–5316. https://doi.org/10.1073/pnas.051309398
  • Spector, I., Shochet, N. R., Blasberger, D., & Kashman, Y. (1989). Latrunculins–novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motility and the Cytoskeleton, 13(3), 127–144. https://doi.org/10.1002/cm.970130302
  • Spector, I., Shochet, N. R., Kashman, Y., & Groweiss, A. (1983). Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science (New York, NY), 219(4584), 493–495. https://doi.org/10.1126/science.6681676
  • Van Holde, K. E., Johnson, W. C., & Ho, P. S. (2006). Principles of physical biochemistry. Pearson/Prentice Hall.
  • Vandecandelaere, A., Martin, S. R., & Engelborghs, Y. (1997). Response of microtubules to the addition of colchicine and tubulin-colchicine: evaluation of models for the interaction of drugs with microtubules. Biochemical Journal, 323(1), 189–196. https://doi.org/10.1042/bj3230189
  • Wang, Z., Wang, N., Han, X., Wang, R., & Chang, J. (2018a). Fluorescence quenching and molecular docking study on the binding of four hydroxyanthraquinones to FTO. Physics and Chemistry of Liquids, 56(4), 482–495. https://doi.org/10.1080/00319104.2017.1346650
  • Wang, Z., Wang, N., Han, X., Wang, R., & Chang, J. (2018b). Interaction of two flavonols with fat mass and obesity-associated protein investigated by fluorescence quenching and molecular docking. Journal of Biomolecular Structure & Dynamics, 36(13), 3388–3397. https://doi.org/10.1080/07391102.2017.1388287
  • Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93(9), 2325–2327.
  • Weisenberg, R. C., Borisy, G. G., & Taylor, E. W. (1968). Colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry, 7(12), 4466–4479. https://doi.org/10.1021/bi00852a043
  • Wilson, L. (1970). Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry, 9(25), 4999–5007. https://doi.org/10.1021/bi00827a026
  • Winkelmann, J. C., Chang, J. G., Tse, W. T., Scarpa, A. L., Marchesi, V. T., & Forget, B. G. (1990). Full-length sequence of the cDNA for human erythroid beta-spectrin. The Journal of Biological Chemistry, 265(20), 11827–11832.
  • Wu, J., Bi, S., Sun, X., Zhao, R., Wang, J., & Zhou, H. (2019). Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. Journal of Biomolecular Structure & Dynamics, 37(13), 3496–3505. https://doi.org/10.1080/07391102.2018.1518789
  • Yarmola, E. G., Somasundaram, T., Boring, T. A., Spector, I., & Bubb, M. R. (2000). Actin-Latrunculin A structure and function: Differential modulation of actin-binding protein funcion by Latrunculin A. Journal of Biological Chemistry, 275(36), 28120–28127. https://doi.org/10.1074/jbc.M004253200
  • Yeggoni, D. P., Meti, M., & Subramanyam, R. (2022). Chebulinic and chebulagic acid binding with serum proteins: biophysical and molecular docking approach. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2022.2060862

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.