149
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Interaction of the insecticide bioallethrin with human hemoglobin: biophysical, in silico and enzymatic studies

, ORCID Icon, , & ORCID Icon
Pages 6591-6602 | Received 09 May 2022, Accepted 30 Jul 2022, Published online: 11 Aug 2022

References

  • Ahmad, S., Arsalan, A., Hashmi, A., Khan, M. A., Siddiqui, W. A., & Younus, H. (2021). A comparative study based on activity, conformation and computational analysis on the inhibition of human salivary aldehyde dehydrogenase by phthalate plasticizers: Implications in assessing the safety of packaged food items. Toxicology, 462(October), 152947. https://doi.org/10.1016/j.tox.2021.152947
  • Amaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., & Smith, J. C. (2018). Ensemble docking in drug discovery. Biophysical Journal, 114(10), 2271–2278. https://doi.org/10.1016/j.bpj.2018.02.038
  • Anwar, M. A., & Choi, S. (2017). Structure-activity relationship in tlr4 mutations: Atomistic molecular dynamics simulations and residue interaction network analysis. Scientific Reports, 7(December 2016), 43807–43814. https://doi.org/10.1038/srep43807
  • Arif, A., Quds, R., & Mahmood, R. (2021). Bioallethrin enhances generation of ROS, damages DNA, impairs the redox system and causes mitochondrial dysfunction in human lymphocytes. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-87799-3
  • Arif, A., Salam, S., & Mahmood, R. (2020). Bioallethrin-induced generation of reactive species and oxidative damage in isolated human erythrocytes. Toxicology in Vitro, 65(January), 104810. https://doi.org/10.1016/j.tiv.2020.104810
  • Awad, M., Ibrahim, E. D. S., Osman, E. I., Elmenofy, W. H., Mahmoud, A. W. M., Atia, M. A. M., & Moustafa, M. A. M. (2022). Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity, development, enzyme activity, and DNA mutagenicity. PLoS One, 17(2), e0254285–21. https://doi.org/10.1371/journal.pone.0254285
  • Azimi, O., Emami, Z., Salari, H., & Chamani, J. (2011). Probing the interaction of human serum albumin with norfloxacin in the presence of high-frequency electromagnetic fields: Fluorescence spectroscopy and circular dichroism investigations. Molecules (Basel, Switzerland), 16(12), 9792–9818. https://doi.org/10.3390/molecules16129792
  • Basu, A., & Kumar, G. S. (2015). Interaction of toxic azo dyes with heme protein: Biophysical insights into the binding aspect of the food additive amaranth with human hemoglobin. Journal of Hazardous Materials, 289, 204–209. https://doi.org/10.1016/j.jhazmat.2015.02.044
  • Basu, A., & Kumar, G. S. (2016). Multispectroscopic and calorimetric studies on the binding of the food colorant tartrazine with human hemoglobin. Journal of Hazardous Materials, 318, 468–476. https://doi.org/10.1016/j.jhazmat.2016.07.023
  • Bhat, S. A., Bhat, W. F., & Bano, B. (2016). Spectroscopic evaluation of the interaction between pesticides and chickpea cystatin: Comparative binding and toxicity analyses. Environmental Science: Processes & Impacts, 18(7), 872–881. https://doi.org/10.1039/C6EM00195E
  • Bibi, R., & Qureshi, I. Z. (2019). Short-term exposure of Balb/c mice to buprofezin insecticide induces biochemical, enzymatic, histopathologic and genotoxic damage in liver and kidney tissues. Toxicology Mechanisms and Methods, 29(8), 587–603. https://doi.org/10.1080/15376516.2019.1631924
  • Bose, T., Bhattacherjee, A., Banerjee, S., & Chakraborti, A. S. (2013). Methylglyoxal-induced modifications of hemoglobin: Structural and functional characteristics. Archives of Biochemistry and Biophysics, 529(2), 99–104. https://doi.org/10.1016/j.abb.2012.12.001
  • Burns, C. J., & Pastoor, T. P. (2018). Pyrethroid epidemiology: A quality-based review. Critical Reviews in Toxicology, 48(4), 297–311. https://doi.org/10.1080/10408444.2017.1423463
  • Callis, P. R. (2014). Binding phenomena and fluorescence quenching. II: Photophysics of aromatic residues and dependence of fluorescence spectra on protein conformation. Journal of Molecular Structure, 1077, 22–29. https://doi.org/10.1016/j.molstruc.2014.04.051
  • Chatterjee, S., & Kumar, G. S. (2016). Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques. Journal of Photochemistry and Photobiology B Biology, 159, 169–178. https://doi.org/10.1016/j.jphotobiol.2016.03.045
  • Chen, Y. H., Yang, J. T., & Martinez, H. M. (1972). Determination of the secondary structures of proteins by Circular Dichroism and optical rotatory dispersion. Biochemistry, 11(22), 4120–4131. https://doi.org/10.1021/bi00772a015
  • Cui, Y., Guo, J., Xu, B., & Chen, Z. (2006). Binding of chlorpyrifos and cypermethrin to blood proteins. Pesticide Biochemistry and Physiology, 85(2), 110–114. https://doi.org/10.1016/j.pestbp.2005.11.004
  • Das, S., Sarmah, S., Hazarika, Z., Rohman, M. A., Sarkhel, P., Jha, A. N., & Singha Roy, A. (2020). Targeting the heme protein hemoglobin by (-)-epigallocatechin gallate and the study of polyphenol-protein association using multi-spectroscopic and computational methods. Physical Chemistry Chemical Physics : PCCP, 22(4), 2212–2228. https://doi.org/10.1039/c9cp05301h
  • Discovery studio [2.1] Accelrys. (2008). https://discover.3ds.com/discovery-studio-visualizer-download
  • Dixit, S., Zia, M. K., Siddiqui, T., Ahsan, H., & Khan, F. H. (2021). Interaction of organophosphate pesticide chlorpyrifos with alpha-2-macroglobulin: Biophysical and molecular docking approach. Journal of Immunoassay & Immunochemistry, 42(2), 138–153. https://doi.org/10.1080/15321819.2020.1837161
  • Dohare, N., Siddiquee, M. A., Parray, M. D., Kumar, A., & Patel, R. (2020). Esterase activity and interaction of human hemoglobin with diclofenac sodium: A spectroscopic and molecular docking study. Journal of Molecular Recognition, 33(8). https://doi.org/10.1002/jmr.2841
  • Doroudian, A., Hosseinzadeh, R., Maghami, P., & Khorsandi, K. (2021). Spectroscopic investigation on molecular aspects and structural and functional effects of tetraethyl pyrophosphate organophosphorus insecticide interaction with adult human hemoglobin. Journal of Biomolecular Structure and Dynamics, 0(0), 1–11. https://doi.org/10.1080/07391102.2021.1902398
  • Everse, J., Johnson, M. C., & Marini, M. A. (1994). Peroxidative activities of hemoglobin and hemoglobin derivatives. Methods in Enzymology, 231.
  • Geraci, G., & Parkhurst, L. J. (1981). Circular Dichroism spectra of hemoglobins. Methods in Enzymology, 76(C), 262–275. https://doi.org/10.1016/0076-6879(81)76127-5[PMC][7329261
  • Giardina, B., Messana, I., Scatena, R., & Castagnola, M. (1995). The multiple functions of hemoglobin. Critical Reviews in Biochemistry and Molecular Biology, 30(3), 165–196. https://doi.org/10.3109/10409239509085142
  • Guven, C., Sevgiler, Y., & Taskin, E. (2018). Pyrethroid insecticides as the mitochondrial dysfunction inducers. Mitochondrial Diseases, 293–322. https://doi.org/10.5772/intechopen.80283
  • Han, X.-L., Tian, F.-F., Ge, Y.-S., Jiang, F.-L., Lai, L., Li, D.-W., Yu, Q.-L., Wang, J., Lin, C., & Liu, Y. (2012). Spectroscopic, structural and thermodynamic properties of chlorpyrifos bound to serum albumin: A comparative study between BSA and HSA. Journal of Photochemistry and Photobiology. B, Biology, 109, 1–11. https://doi.org/10.1016/j.jphotobiol.2011.12.010
  • Hashemi-Shahraki, F., Shareghi, B., & Farhadian, S. (2021). Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. Journal of Molecular Liquids, 341, 117317. https://doi.org/10.1016/j.molliq.2021.117317
  • Hashmi, M. A., Malik, A., Arsalan, A., Khan, M. A., & Younus, H. (2021). Elucidation of kinetic and structural properties of eye lens ζ-crystallin: an in vitro and in silico approach. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.2017351
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Kakko, I., Toimela, T., & Tähti, H. (2003). The synaptosomal membrane bound ATPase as a target for the neurotoxic effects of pyrethroids, permethrin and cypermethrin. Chemosphere, 51(6), 475–480. https://doi.org/10.1016/S0045-6535(02)00854-8
  • Kelly, S., & Price, N. (2000). The use of circular dichroism in the investigation of protein structure and function. Current Protein & Peptide Science, 1(4), 349–384. https://doi.org/10.2174/1389203003381315
  • Kim, I. Y., Shin, J. H., Kim, H. S., Lee, S. J., Kang, I. H., Kim, T. S., Moon, H. J., Choi, K. S., Moon, A., & Han, S. Y. (2004). Assessing estrogenic activity of pyrethroid insecticides using in vitro combination assays. The Journal of Reproduction and Development, 50(2), 245–255. https://doi.org/10.1262/jrd.50.245
  • Kumar, A., Ali, M., Ningthoujam, R. S., Gaikwad, P., Kumar, M., Nath, B. B., & Pandey, B. N. (2016). The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology. Journal of Hazardous Materials, 307, 281–293. https://doi.org/10.1016/j.jhazmat.2015.12.029
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g_mmpbsa —A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lee, Y. H., Kim, H. H., Lee, J., Il, Lee, J. H., Kang, H., & Lee, J. Y. (2018). Indoor contamination from pesticides used for outdoor insect control. The Science of the Total Environment, 625, 994–1002. https://doi.org/10.1016/j.scitotenv.2018.01.010
  • Li, J., Zhou, N., Luo, K., Zhang, W., Li, X., Wu, C., & Bao, J. (2014). In silico discovery of potential VEGFR-2 inhibitors from natural derivatives for anti-angiogenesis therapy. International Journal of Molecular Sciences, 15(9), 15994–16011. https://doi.org/10.3390/ijms150915994
  • Madhubabu, G., & Yenugu, S. (2014). Allethrin induces oxidative stress, apoptosis and calcium release in rat testicular carcinoma cells (LC540). Toxicology in Vitro, 28(8), 1386–1395. https://doi.org/10.1016/j.tiv.2014.07.008
  • Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM- PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 18(1), 113–135.https://doi.org/10.1023/A:1008763014207
  • Miyamoto, J. (1976). Degradation, metabolism and toxicity of synthetic pyrethroids. Environmental Health Perspectives, 14(April), 15–28. https://doi.org/10.1289/ehp.761415
  • Molina-Bolívar, J. A., Galisteo-González, F., Carnero Ruiz, C., Medina, Ó., Donnell, M., & Parra, A. (2014). Spectroscopic investigation on the interaction of maslinic acid with bovine serum albumin. Journal of Luminescence, 156, 141–149. https://doi.org/10.1016/j.jlumin.2014.08.011
  • Na, H. G., Kim, Y. D., Choi, Y. S., Bae, C. H., & Song, S. Y. (2018). Allethrin and prallethrin stimulates MUC5AC expression through oxidative stress in human airway epithelial cells. Biochemical and Biophysical Research Communications, 503(1), 316–322. https://doi.org/10.1016/j.bbrc.2018.06.022
  • Ni, Y., Liu, G., & Kokot, S. (2008). Fluorescence spectrometric study on the interactions of Isoprocarb and sodium 2-isopropylphenate with bovine serum albumin. Talanta, 76(3), 513–521. https://doi.org/10.1016/j.talanta.2008.03.037
  • Patel, R., Maurya, N., Parray, M., ud din, Farooq, N., Siddique, A., Verma, K. L., & Dohare, N. (2018). Esterase activity and conformational changes of bovine serum albumin toward interaction with mephedrone: Spectroscopic and computational studies. Journal of Molecular Recognition, 31(11), e2734–13. https://doi.org/10.1002/jmr.2734
  • Patrinos, G. P., & Antonarakis, S. E. (2010). Human hemoglobin. In Vogel and Motulsky’s Human Genetics (pp. 365–401). Springer. https://doi.org/10.1007/978-3-540-37654-5
  • Pelton, J. T., & McLean, L. R. (2000). Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry, 277(2), 167–176. https://doi.org/10.1006/abio.1999.4320
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Ray, D. E., & Forshaw, P. J. (2000). Pyrethroid insecticides: Poisoning syndromes, synergies, and therapy. Journal of Toxicology. Clinical Toxicology, 38(2), 95–101. https://doi.org/10.1081/CLT-100100922
  • Rehman, H., Aziz, A. T., Saggu, S., Abbas, Z. K., Mohan, A., & Ansari, A. A. (2014). Systematic review on pyrethroid toxicity with special reference to deltamethrin. Journal of Entomology and Zoology Studies, 2(26), 60–70.
  • Rossignol, D. P. (1991). Analysis of pyrethroid binding by use of a photoreactive analogue: Possible role for GTP-binding proteins in pyrethroid activity. Pesticide Biochemistry and Physiology, 41(2), 103–120. https://doi.org/10.1016/0048-3575(91)90065-T
  • Saquib, Q., Al-Khedhairy, A. A., Siddiqui, M. A., Roy, A. S., Dasgupta, S., & Musarrat, J. (2011). Preferential binding of insecticide phorate with sub-domain IIA of human serum albumin induces protein damage and its toxicological significance. Food and Chemical Toxicology, 49(8), 1787–1795. https://doi.org/10.1016/j.fct.2011.04.028
  • Sarzehi, S., & Chamani, J. (2010). Investigation on the interaction between tamoxifen and human holo-transferrin: Determination of the binding mechanism by fluorescence quenching, resonance light scattering and circular dichroism methods. International Journal of Biological Macromolecules, 47(4), 558–569. https://doi.org/10.1016/j.ijbiomac.2010.08.002
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & Van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Sen, S., Bose, T., Roy, A., & Chakraborti, A. S. (2007). Effect of non-enzymatic glycation on esterase activities of hemoglobin and myoglobin. Molecular and Cellular Biochemistry, 301(1–2), 251–257. https://doi.org/10.1007/s11010-007-9418-5
  • Shafer, T. J., Meyer, D. A., & Crofton, K. M. (2005). Developmental neurotoxicity of pyrethroid insecticides: Critical review and future research needs. Environmental Health Perspectives, 113(2), 123–136. https://doi.org/10.1289/ehp.7254
  • Siddiqui, S., Ameen, F., Jahan, I., Nayeem, S. M., & Tabish, M. (2019). A comprehensive spectroscopic and computational investigation on the binding of the anti-asthmatic drug triamcinolone with serum albumin. New Journal of Chemistry, 43(10), 4137–4151. https://doi.org/10.1039/C8NJ05486J
  • Sil, S., Bose, T., Roy, D., & Chakraborti, A. S. (2004). Protoporphyrin IX-induced structural and functional changes in human red blood cells, haemoglobin and myoglobin. Journal of Biosciences, 29(3), 281–291. https://doi.org/10.1007/BF02702610
  • Soni, V., & A., Anjikar, A. (2014). Use of pyrethrin/pyrethrum and its effect on environment and human: A review. Pharma Tutor, 2(6), 52–60.
  • Talts, U., Fredriksson, A., & Eriksson, P. (1998). Changes in behavior and muscarinic receptor density after neonatal and adult exposure to bioallethrin. Neurobiology of Aging, 19(6), 545–552. https://doi.org/10.1016/S0197-4580(98)00093-1
  • Tan, J., & Soderlund, D. M. (2010). Divergent actions of the pyrethroid insecticides S-bioallethrin, tefluthrin and deltamethrin on rat Nav 1.6 sodium channels. Toxicology and Applied Pharmacology, 247(3), 229–227. https://doi.org/10.1016/j.taap.2010.07.001
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 32, 455–461. https://doi.org/10.1002/jcc.21334
  • Vojdani, A., Pangborn, J. B., Vojdani, E., & Cooper, E. L. (2003). Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism. International Journal of Immunopathology and Pharmacology, 16(3), 189–199. https://doi.org/10.1177/039463200301600302
  • Wang, J., Ma, L., Zhang, Y., & Jiang, T. (2017). Investigation of the interaction of deltamethrin (DM) with human serum albumin by multi-spectroscopic method. Journal of Molecular Structure, 1129, 160–168. https://doi.org/10.1016/j.molstruc.2016.09.061
  • Wang, K., Wang, Z., Xie, Y., Xue, X., Tang, S. F., & Hou, X. (2019). Molecular mechanism investigation on the interaction of Clothianidin with human serum albumin. Spectroscopy Letters, 52(5), 246–252. https://doi.org/10.1080/00387010.2019.1615952
  • World Health Organization. (2020). Vector borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.
  • Yang, X., Chou, J., Sun, G., Yang, H., & Lu, T. (1998). Synchronous fluorescence spectra of hemoglobin: A study of aggregation states in aqueous solutions. Microchemical Journal, 60(3), 210–216. https://doi.org/10.1006/mchj.1998.1648
  • Zhao, H., Bojko, B., Liu, F., Pawliszyn, J., Peng, W., & Wang, X. (2020). Mechanism of interactions between organophosphorus insecticides and human serum albumin: Solid-phase microextraction, thermodynamics and computational approach. Chemosphere, 253(198), 126698. https://doi.org/10.1016/j.chemosphere.2020.126698
  • Zsila, F., Bikádi, Z., & Simonyi, M. (2003). Molecular basis of the cotton effects induced by the binding of curcumin to human serum albumin. Tetrahedron: Asymmetry, 14(16), 2433–2444. https://doi.org/10.1016/S0957-4166(03)00486-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.