159
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

New sulphonamide-peptide hybrid molecules as potential PBP 2a ligands and methicillin resistant Staphylococcus aureus actives

, , , , , & show all
Pages 6684-6694 | Received 22 Apr 2022, Accepted 03 Aug 2022, Published online: 17 Aug 2022

References

  • Abubakar, U., & Sulaiman, S. A. S. (2018). Prevalence, trend and antimicrobial susceptibility of Methicillin Resistant Staphylococcus aureus in Nigeria: a systematic review. Journal of Infection and Public Health, 11(6), 763-770. https://doi.org/10.1016/j.jiph.2018.05.013
  • Appelbaum, P. C. (2006). The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clinical Microbiology and Infection, 12(Suppl 1), 16–23.
  • Bondock, S., Fadaly, W., & Metwally, M. A. (2010). Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. European Journal of Medicinal Chemistry, 45(9), 3692–3701. https://doi.org/10.1016/j.ejmech.2010.05.018
  • Cardoso, M. H., Ribeiro, S. H., Nolasco, D. O., Fuente-Núñez, C. D. L., Felício, M. R., Gonçalves, S., Matos, C. O., Liao, L. M., Santos, N. C., Hancock, R. E. W., Franco, O. L., & Migliolo, L. (2016). A polyalanine peptide derived from polar fish with anti-infectious activities. Scientific Reports, 6, 21385. https://doi.org/10.1038/srep21385
  • Chang, S., Sievert, D. M., Hageman, J. C., Boulton, M. L., Tenover, F. C., Downes, F. P., Shah, S., Rudrik, J. T., Pupp, G. R., Brown, W. J., Cardo, D., & Fridkin, S. K. (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. The New England Journal of Medicine, 348(14), 1342–1347. https://doi.org/10.1056/NEJMoa025025
  • ChemDraw. (n.d.). ChemDraw Ultra 12.0., CambridgeSoft, Cambridge, MA. www.cambridgesoft.com
  • Elliott, A. G., Huang, J. X., Neve, S., Zuegg, J., Edwards, I. A., Cain, A. K., Boinett, C. J., Barquist, L., Lundberg, C. V., Steen, J., Butler, M. S., Mobli, M., Porter, K. M., Blaskovich, M. A. T., Lociuro, S., Strandh, M., & Cooper, M. A. (2020). An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nature Communications, 11, 3184.
  • Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, A. (2014). Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. International Union of Biochemistry and Molecular Biology, 66(8), 572–577. https://doi.org/10.1002/iub.1289
  • French, G. L. (2006). Bactericidal agents in the treatment of MRSA infections-the potential role of daptomycin. Journal of Antimicrobial Chemotherapy, 58(6), 1107–1117. https://doi.org/10.1093/jac/dkl393
  • Fuda, C., Hesek, D., Lee, M., Morio, K., Nowak, T., & Mobashery, S. (2005). Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. Journal of the American Chemical Society, 127(7), 2056–2057. https://doi.org/10.1021/ja0434376
  • Gadad, A. K., Mahajanshetti, C. S., Nimbalkar, S., & Raichurkar, A. (2000). Synthesis and antibacterial activity of some 5-guanylhydrazone/thiocyanato-6-arylimidazo[2,1-b]-1,3, 4-thiadiazole-2-sulfonamide derivatives. European Journal of Medicinal Chemistry, 35(9), 853–857. https://doi.org/10.1016/s0223-5234(00)00166-5
  • Ghandi, T. N., & Malani, P. N. (2020). Combination therapy for methicillin-resistant Staphylocuccus aureus bacteremia. Journal of the American Medical Association, 323(6), 515–516.
  • GraphPad Prism. (n.d.). GraphPad Prism version 7.00.159 for Windows, GraphPad Software, San Diego, CA, www.graphpad.com
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5-6), 490–641. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • Hernandez, P. O., Lema, S., Tyring, S. K., & Mendoza, N. (2012). Ceftaroline in complicated skin and skin-structure infections. Infection and Drug Resistance, 5, 23–35. https://doi.org/10.2147/IDR.S17432
  • Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T., & Tenover, F. C. (1997). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. Journal of Antimicrobial Chemotherapy, 40(1), 135–136. https://doi.org/10.1093/jac/40.1.135
  • Ibezim, A., Nwodo, N. J., Nnaji, N. J., Ujam, O. T., Olubiyi, O. O., & Mba, C. J. (2017). In silico investigation of morpholines as novel class of trypanosomal triosephosphate isomerase inhibitors. Medicinal Chemistry Research, 26(1), 180–189. https://doi.org/10.1007/s00044-016-1739-z
  • Janardhanan, J., Bouley, R., Martínez-Caballero, S., Peng, Z., Batuecas-Mordillo, M., Meisel, J. E., Ding, D., Schroeder, V. A., Wolter, W. R., Mahasenan, K. V., Hermoso, J. A., Mobashery, S., & Chang, M. (2019). The quinazolinone allosteric inhibitor of PBP 2a synergizes with piperacillin and tazobactam against methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 63, e02637-18.
  • Jevons, M. P. (1961). Celbenin – resistant Staphylococci. BMJ, 1(5219), 124–125. https://doi.org/10.1136/bmj.1.5219.124-a
  • Köck, R., Becker, K., Cookson, B., van Gemert-Pijnen, J. E., Harbarth, S., Kluytmans, J., Mielke, M., Peters, G., Skov, R. L., Struelens, M. J., Tacconelli, E., Navarro, A. T., Witte, W., & Friedrich, A. W. (2010). Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveillance, 15(41), 19688. https://doi.org/10.2807/ese.15.41.19688-en
  • Li, H., Leung, K.-S., Ballester, P. J., & Wong, M.-H. (2014). Istar: a web platform for large-scale protein-ligand docking. PLoS One, 9(1), e85678. https://doi.org/10.1371/journal.pone.0085678
  • Mohammad, H., Reddy, P. V. N., Monteleone, D., Mayhoub, A. S., Cushman, M., Hammac, G. K., & Seleem, M. N. (2015). Antibacterial characterization of novel synthetic thiazole compounds against methicillin-resistant Staphylococcus pseudintermedius. PLoS One, 10(6), e0130385. https://doi.org/10.1371/journal.pone.0130385
  • Molecular Operating Environment (MOE). (2014). 2014.01; Chemical Computing Group ULC, Montreal, Canada.
  • Moretta, A., Scieuzo, C., Petrone, M. A., Salvia, R., Manniello, M. D., Franco, A., Lucchetti, D., Vassallo, A., Vogel, H., Sgambato, A., & Falabella, P. (2021). Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology, 11, 668632. https://doi.org/10.3389/fcimb.2021.668632
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Neelesh, K. M., Vijay, M., & Narendra, K. J. (2013). Receptor-based targeting of therapeutics. Therapeutic Delivery, 4(3), 369–394.
  • Onoabedje, E. A., Ibezim, A., Okoro, U. C., & Batra, S. (2020). Synthesis, molecular docking, antiplasmodial and antioxidant activities of new sulfonamido-pepetide derivatives. Heliyon, 6(9), e04958. https://doi.org/10.1016/j.heliyon.2020.e04958
  • Onoabedje, E. A., Ibezim, A., Okoro, U. C., & Batra, S. (2021). New sulphonamide pyrolidine carboxamide derivatives: Synthesis, molecular docking, antiplasmodial and antioxidant activities. PLoS One. 16(2), e0243305. https://doi.org/10.1371/journal.pone.0243305
  • Oro, L., Ciani, M., & Comitini, F. (2014). Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. Journal of Applied Microbiology, 116(5), 1209–1217. https://doi.org/10.1111/jam.12446
  • Otero, L. H., Rojas-Altuve, A., Llarrull, L. I., Carrasco-Lopez, C., Kumarasiri, M., Lastochkin, E., Fishovitz, J., Dawley, M., Hesek, D., Lee, M., Johnson, J. W., Fisher, J. F., Chang, M., Mobashery, S., & Hermoso, J. A. (2013). How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 16808–16813. https://doi.org/10.1073/pnas.1300118110
  • Ratrey, P., Mahapatra, A. D., Pandit, S., Hadianawala, M., Majhi, S., Mishra, A., & Datta, B. (2021). Emergent antibacterial activity of N-(thiazol-2-yl)benzenesulfonamides in conjunction with cell-penetrating octaarginine. RSC Advances, 11(46), 28581–28592. https://doi.org/10.1039/d1ra03882f
  • Sarojini, B. K., Krishna, B. G., Darshanraj, C. G., Bharath, B. R., & Manjunatha, H. (2010). Synthesis, characterization, in vitro and molecular docking studies of new 2,5-dichloro thienyl substituted thiazole derivatives for antimicrobial properties. European Journal of Medicinal Chemistry, 45(8), 3490–3496. https://doi.org/10.1016/j.ejmech.2010.03.039
  • Schuttelkop, A. W., & van Aalten, D. M. (2004). PRODRG : A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1712. https://doi.org/10.1107/S0907444904011679
  • Scott, R. P., Hunenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P., & van Gunsteren, W. F. (1999). The GROMOS biomolecular simulation program package. The Journal of Physical Chemistry A, 103(19), 3596–3607. https://doi.org/10.1021/jp984217f
  • Sit, P. S., Teh, C. S., Idris, N., Sam, I. C., Omar, S. F. S., Sulaiman, H., Kong, K. L., Kamarulzaman, A., & Ponnampalavanar, S. (2017). Prevalence ofmethicillin-resistant Staphylococcus aureus (MRSA) infection and the molecu-lar characteristics of MRSA bacteraemia over a two-year period in a tertiaryteaching hospital in Malaysia. BMC Infectious Diseases, 17(274), 1–14.
  • Solomon, S. L., & Oliver, K. B. (2014). Antibiotic resistance threats in the United States: Stepping back from the brink. American Family Physician, 89(12), 938–941.
  • Stryjewski, M. E., & Corey, G. R. (2014). Methicillin-Resistant Staphylococcus aureus: An Evolving Pathogen. Clinical Infectious Diseases, 58(suppl 1), S10–S19. https://doi.org/10.1093/cid/cit613
  • Su-fang, K., Yue-tao, C., Jia-jie, C., Xuan-xian, P., Zhuanggui, C., & Hui, L. (2021). Synergy of alanine and gentamicin to reduce nitric oxide for elevating killing efficacy to antibiotic-resistant Vibrioalginolyticus. Virulence, 12(1), 1737–1753.
  • Tigist, A., Gizachew, Y., Ayelegn, D., & Zufan, S. (2012). Staphylococcus aureus burn wound infection among patients attending yekatit 12 hospital burn unit, Addis Ababa, Ethiopia. Ethiopian Journal of Health Sciences, 22(3), 209–213.
  • Ugwu, D., Okoro, U. C., Ukoha, P. O., Okafor, S., Ibezim, A., & Kumar, N. M. (2017). Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide. European Journal of Medicinal Chemistry, 135, 349–369. https://doi.org/10.1016/j.ejmech.2017.04.029
  • Ugwuja, D. I., Okoro, U., Soman, S., Ibezim, A., Ugwu, D., Soni, R., Obi, B., Ezugwu, J., & Ekoh, O. (2021). New glycine derived peptides bearing benzenesulphonamide as an antiplasmodial agent. New Journal of Chemistry, 45(7), 3660–3674. https://doi.org/10.1039/D0NJ04387G
  • Verma, S. K., Verma, R., Xue, F., Thakur, P. K., Girish, Y. K., & Rakesh, K. P. (2020). Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorganic Chemistry, 105, 104400. https://doi.org/10.1016/j.bioorg.2020.104400
  • Walsh, C. (1999). Deconstructing vancomycin. Science (New York, N.Y.), 284(5413), 442–443. https://doi.org/10.1126/science.284.5413.442
  • Wilcox, M. H. (2005). Update on linezolid: the first oxazolidinone antibiotic. Expert Opinion on Pharmacotherapy, 6(13), 2315–2326. https://doi.org/10.1517/14656566.6.13.2315
  • You, J. H. S., Choi, K. W., Wong, T. Y., Ip, M., Ming, W. K., Wong, R. Y., Chan, S. N., Tse, H. T., Chau, C. T. S., & Lee, N. L. S. (2017). Disease burden, characteristics, and outcomes of methicillin-resistant staphylococcus aureus bloodstream infection in Hong Kong. Asia-Pacific Journal of Public Health, 29(5), 451–461. https://doi.org/10.1177/1010539517717365

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.