240
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of novel potential inhibitors of TMPRSS2 and Mpro of SARS‐CoV‐2 using E-pharmacophore and docking-based virtual screening combined with molecular dynamic and quantum mechanics

, , , , , & ORCID Icon show all
Pages 6775-6788 | Received 29 Mar 2022, Accepted 05 Aug 2022, Published online: 23 Aug 2022

References

  • Amin, S. A., Banerjee, S., Ghosh, K., Gayen, S., & Jha, T. (2021). Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorganic & Medicinal Chemistry, 29, 115860. https://doi.org/10.1016/J.BMC.2020.115860.
  • Amin, S. A., Banerjee, S., Singh, S., Qureshi, I. A., Gayen, S., & Jha, T. (2021). First structure–activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Molecular Diversity, 25(3), 1827–1838.
  • Brooke, G. N., & Prischi, F. (2020). Structural and functional modelling of SARS-CoV-2 entry in animal models. Science Reports, 101(10), 1–11. https://doi.org/10.1038/s41598-020-72528-z
  • Congreve, M., & Murray, C. W., Blundell, T. L. (2005). Structural biology and drug discovery. Drug Discovery Today, 10, 895–907. https://doi.org/10.1016/S1359-6446(05)03484-7
  • Chen, C., Han, D., Cai, C., & Tang, X. (2010). An overview of liposome lyophilization and its future potential. Journal of Controlled Release: Official Journal of the Controlled Release Society, 142(3), 299–311. https://doi.org/10.1016/j.jconrel.2009.10.024.
  • Choudhary, M. I., Shaikh, M., tul-Wahab, Atia., & ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS One. 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • Elbadwi, F. A., Khairy, E. A., Alsamani, F. O., Mahadi, M. A., Abdalrahman, S. E., Ahmed, Z. A. M., Elsayed, I., Ibraheem, W., & Alzain, A. A. (2021). Identification of novel transmembrane protease serine type 2 drug candidates for COVID-19 using computational studies. Informatics in Medicine Unlocked, 26, 100725. https://doi.org/10.1016/j.imu.2021.100725.
  • Elfiky, A. A., Mahdy, S. M., & Elshemey, W. M. (2017). Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. Journal of Medical Virology, 89(6), 1040–1047. https://doi.org/10.1002/jmv.24736.
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. Journal of Biomolecular Structure and Dynamics., 39(9), 1–7. https://doi.org/10.1080/07391102.2020.1760136/SUPPL_FILE/TBSD_A_1760136_SM3437.PDF
  • Farouk, A., Hassan, M., Imran, M., Park, T., Alotaibi, S. S., & Dong, J. (2021). Screening of inhibitors against SARS-CoV-2 spike protein and their capability to block the viral entry mechanism : A viroinformatics study. Saudi Journal of Biological Sciences, 28(6), 3262–3269. Saudi J. Biol. Sci. https://doi.org/10.1016/j.sjbs.2021.02.066.
  • From SARS to, H. R. (2014). MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS Journal 281, 4085–4096. https://doi.org/10.1111/FEBS.12936
  • Jiménez-Avalos, G., Vargas-Ruiz, A. P., Delgado-Pease, N. E., Olivos-Ramirez, G. E., Sheen, P., Fernández-Díaz, M., Quiliano, M., Zimic, M., A., Agurto-Arteaga, R., Antiparra, M., Ardiles-Reyes, K., Calderon, Y., Cauna-Orocollo, M., de Grecia Cauti-Mendoza, N., Chipana-Flores, R., Choque-Guevara, X., Chunga-Girón, M., Criollo-Orozco, L., De La Cruz, A., Poma-Acevedo, … Quiñones-Garcia, I. (2021). Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO, Science Reports 11 1–19. https://doi.org/10.1038/s41598-021-94951-6
  • Gajjar, N. D., Dhameliya, T. M., & Shah, G. B. (2021). In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. Journal of Molecular Structure, 1239, 130488. https://doi.org/10.1016/j.molstruc.2021.130488.
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 39(12), 4362–4374. https://doi.org/10.1080/07391102.2020.1779818
  • Glowacka, I., Bertram, S., Müller, M. A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Tsegaye, T. S., He, Y., Gnirss, K., Niemeyer, D., Schneider, H., Drosten, C., & Pöhlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of Virology, 85(9), 4122–4134. https://doi.org/10.1128/JVI.02232-10.
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell. 181, 271–280.https://doi.org/10.1016/j.cell.2020.02.052.
  • Hu, X., Shrimp, J. H., Guo, H., Xu, M., Chen, C. Z., Zhu, W., Zakharov, A., Jain, S., Shinn, P., Simeonov, A., Hall, M. D., & Shen, M. (2020). Discovery of TMPRSS2 inhibitors from virtual screening. BioRxiv, https://doi.org/10.1101/2020.12.28.424413
  • Hu, X., Shrimp, J. H., Guo, H., Xu, M., Chen, C. Z., Zhu, W., Zakharov, A. V., Jain, S., Shinn, P., Simeonov, A., Hall, M. D., & Shen, M. (2021). Discovery of TMPRSS2 inhibitors from virtual screening as a potential treatment of COVID-19. ACS Pharmacology & Translational Science, 4(3), 1124–1135. https://doi.org/10.1021/acsptsci.0c00221.
  • Hussain, M., Jabeen, N., Amanullah, A., Baig, A. A., Aziz, B., Shabbir, S., Raza, F., & Uddin, N. (2020). Molecular docking between human tmprss2 and sars-cov-2 spike protein: Conformation and intermolecular interactions. AIMS Microbiology, 6(3), 350–360. https://doi.org/10.3934/microbiol.2020021.
  • Ibrahim, I. M., Abdelmalek, D. H., Elshahat, M. E., & Elfiky, A. A. (2020). COVID-19 spike-host cell receptor GRP78 binding site prediction. The Journal of Infection, 80(5), 554–562. https://doi.org/10.1016/J.JINF.2020.02.026.
  • Idris, M. O., Yekeen, A. A., Alakanse, O. S., & Durojaye, O. A. (2020). Computer-aided screening for potential TMPRSS2 inhibitors: A combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches., 5638-5656. https://doi.org/10.1080/07391102.2020.1792346.
  • Idris, M. O., Yekeen, A. A., Alakanse, O. S., & Durojaye, O. A. (2021). Computer-aided screening for potential TMPRSS2 inhibitors: A combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. Journal of Biomolecular Structure and Dynamics. 39(15), 5638-5656. https://doi.org/10.1080/07391102.2020.1792346
  • Jain, V., & Yuan, J.-M. (2020). Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: A systematic review and meta-analysis. International Journal of Public Health, 65(5), 533–546. https://doi.org/10.1007/s00038-020-01390-7.
  • Jayaweera, M., Perera, H., Gunawardana, B., & Manatunge, J. (2020). Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmental Research, 188, 109819. https://doi.org/10.1016/j.envres.2020.109819.
  • Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A.-E., Humphrey, C. D., Shieh, W.-J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., … Anderson, L. J, SARS Working Group. (2003). A novel coronavirus associated with severe acute respiratory syndrome. The New England Journal of Medicine, 348(20), 1953–1966. https://doi.org/10.1056/nejmoa030781.
  • Li, K., Meyerholz, D. K., Bartlett, J. A., & McCray, P. B. (2021). The TMPRSS2 inhibitor nafamostat reduces SARS-CoV-2 pulmonary infection in mouse models of COVID-19. MBio, 12(4), e00970-21. https://doi.org/10.1128/mBio.00970-21
  • Liang, J., Karagiannis, C., Pitsillou, E., Darmawan, K. K., Ng, K., Hung, A., & Karagiannis, T. C. (2020). Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Computational Biology and Chemistry, 89, 107372. https://doi.org/10.1016/j.compbiolchem.2020.107372.
  • Lokhande, K. B., Doiphode, S., Vyas, R., & Swamy, K. V. (2021). Molecular docking and simulation studies on SARS-CoV-2 Mpro reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as potent drugs against COVID-19. Journal of Biomolecular Structure and Dynamics. 39, 1–12. https://doi.org/10.1080/07391102.2020.1805019
  • Masters, P. S. (2006). The molecular biology of Coronaviruses. Adv. Virus Res, 65, 193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
  • Naik, B., & Venkata Satish Kumar, M., Nidhi, G., Ojha, R., Pundarikaksha, D., Satyendra, S., Prajapati, V. K., & Prusty, D. (2021). Chemical system biology approach to identify multi-targeting FDA inhibitors for treating COVID-19 and associated health complications. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1931451
  • Nagarajan, H., Lakshmi, P. D., & Vetrivel, U. (2020). Deciphering potential inhibitors targeting THI4 of Fusarium solani sp. to combat fungal keratitis : An integrative computational approach. Computational Biology and Chemistry, 88, 107350. https://doi.org/10.1016/j.compbiolchem.2020.107350.
  • Noureddine, O., Issaoui, N., & Al-Dossary, O. (2021). DFT and molecular docking study of chloroquine derivatives as antiviral to coronavirus COVID-19. Journal of King Saud University. Science, 33(1), 101248. https://doi.org/10.1016/j.jksus.2020.101248.
  • Peacock, T. P., Goldhill, D. H., Zhou, J., Baillon, L., Frise, R., Swann, O. C., Kugathasan, R., Penn, R., Brown, J. C., Sanchez-David, R. Y., Braga, L., Williamson, M. K., Hassard, J. A., Staller, E., Hanley, B., Osborn, M., Giacca, M., Davidson, A. D., Matthews, D. A., & Barclay, W. S. (2020). The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells. BioRxiv, 2020.09.30.318311. https://doi.org/10.1101/2020.09.30.318311
  • Prajapat, M., Shekhar, N., Sarma, P., Avti, P., Singh, S., Kaur, H., Bhattacharyya, A., Kumar, S., Sharma, S., Prakash, A., & Medhi, B. (2020). Journal of Molecular Graphics and Modelling Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS. Journal of Molecular Graphics & Modelling, 101, 107716. https://doi.org/10.1016/j.jmgm.2020.107716.
  • Prashantha, C. N., Gouthami, K., Lavanya, L., Bhavanam, S., Jakhar, A., Shakthiraju, R. G., Suraj, V., Sahana, K. V., Sujana, H. S., Guruprasad, N. M., & Ramachandra, R. (2021). Molecular screening of antimalarial, antiviral, anti-inflammatory and HIV protease inhibitors against spike glycoprotein of coronavirus. Journal of Molecular Graphics & Modelling, 102, 107769. https://doi.org/10.1016/j.jmgm.2020.107769.
  • Quimque, M. T. J., Notarte, K. I. R., Fernandez, R. A. T., Mendoza, M. A. O., Liman, R. A. D., Lim, J. A. K., Pilapil, L. A. E., Ong, J. K. H., Pastrana, A. M., Khan, A., Wei, D. Q., & Macabeo, A. P. G. (2020). Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. Journal of Biomolecular Structure and Dynamics. 1102, 4316-4333. https://doi.org/10.1080/07391102.2020.1776639
  • Rasool, N., Yasmin, F., Sahai, S., Hussain, W., Inam, H., & Arshad, A. (2021). Biological perspective of thiazolide derivatives against Mpro and MTase of SARS-CoV-2 : Molecular docking, DFT and MD simulation investigations. Chemical Physics Letters, 771, 138463. https://doi.org/10.1016/j.cplett.2021.138463.
  • Shulla, A., Heald-Sargent, T., Subramanya, G., Jincun, Z., Perlman, S., & Gallagher, T. (2011). A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. Journal of Virology, 85, 873–882. https://doi.org/10.1128/JVI.02062-10.
  • Sarma, P., Shekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., Dhibar, D. P., & Medhi, B. (2021). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure & Dynamics, 39(8), 2724–2732. https://doi.org/10.1080/07391102.2020.1753580.
  • Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. https://doi.org/10.1073/PNAS.2003138117.
  • Sobhia, M. E., Ghosh, K., Sivangula, S., Kumar, S., & Singh, H. (2022). Identification of potential SARS-CoV-2 Mpro inhibitors integrating molecular docking and water thermodynamics. Journal of Biomolecular Structure and Dynamics 40(11), 1–11. https://doi.org/10.1080/07391102.2020.1867642
  • Tyrrell, D. A. J., Almeida, J. D., Cunningham, C. H., Dowdle, W. R., Hofstad, M. S., McIntosh, K., Tajima, M., Zakstelskaya, L. Y., Easterday, B. C., Kapikian, A., & Bingham, R. W. (1975). Coronaviridae. Intervirology, 5(1/2), 76–82. https://doi.org/10.1159/000149883.
  • Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters, 30(17), 127377. https://doi.org/10.1016/j.bmcl.2020.127377.
  • Usha, T., Shanmugarajan, D., Goyal, A. K., Kumar, C. S., & Middha, S. K. (2017). Recent updates on computer-aided drug discovery: Time for a paradigm shift. Current Topics in Medicinal Chemistry, 17(30), 3296–3307. https://doi.org/10.2174/1568026618666180101163651.
  • van de Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews. Drug Discovery, 2(3), 192–204. 2https://doi.org/10.1038/nrd1032.
  • Vardhan, S., & Sahoo, S. K. (2022). Virtual screening by targeting proteolytic sites of furin and TMPRSS2 to propose potential compounds obstructing the entry of SARS-CoV-2 virus into human host cells. Journal of Traditional Complementary Medicine, 12(1), 6–15. https://doi.org/10.1016/j.jtcme.2021.04.001
  • WHO Coronavirus. (2021) Dashboard|WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. https://covid19.who.int/
  • WHO, Coronavirus disease (COVID-19). (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=EAIaIQobChMI2eb5i7eN8QIVuRkGAB2I1AAuEAAYASAAEgI5T_D_BwE
  • Wruck, W., & Adjaye, J. (2020). SARS-CoV-2 receptor ACE2 is co-expressed with genes related to transmembrane serine proteases, viral entry, immunity and cellular stress, Sci. Reports 10 1–14. https://doi.org/10.1038/s41598-020-78402-2.
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/SCIENCE.ABB3405.
  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.