277
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

HIF1 inhibition of the biflavonoids against pancreas cancer: drug-likeness, bioavailability, ADMET, PASS, molecular docking, molecular dynamics, and MM/GBSA calculations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6845-6856 | Received 03 Feb 2022, Accepted 08 Aug 2022, Published online: 24 Aug 2022

References

  • Bai, Q., Tan, S., & Xu, T. (2021). MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief Bioinform, 22, 1–12. https://doi.org/10.1093/bib/bbaa161
  • Banerjee, T., Valacchi, G., Ziboh, V. A., & Vliet, A. v d (2002). Inhibition of TNFalpha-induced cyclooxygenase-2 expression by amentoflavone through suppression of NF-kappaB activation in A549 cells. Molecular and Cellular Biochemistry, 238(1–2), 105–110. https://doi.org/10.1023/a:1019963222510
  • Bayiha Ba Njock, G., Bartholomeusz, T. A., Foroozandeh, M., Pegnyemb, D. E., Christen, P., & Jeannerat, D. (2012). NASCA-HMBC, a new NMR methodology for the resolution of severely overlapping signals: Application to the study of Agathisflavone. Phytochemical Analysis, 23(2), 126–130. https://doi.org/10.1002/pca.1333
  • Blackadar, C. B. (2016). Historical review of the causes of cancer. World Journal of Clinical Oncology, 7(1), 54–86. https://doi.org/10.5306/wjco.v7.i1.54
  • Brown, T. (2014). ChemDraw. The Science Teacher, 81, 67.
  • Cao, Z., Xu, Y., Guo, F., Chen, X., Ji, J., Xu, H., He, J., Yu, Y., Sun, Y., Lu, X., & Wang, F. (2020). FASN protein overexpression indicates poor biochemical recurrence-free survival in prostate cancer. Disease Markers, 2020, 1–9. https://doi.org/10.1155/2020/3904947
  • Chen, F., Sun, H., Wang, J., Zhu, F., Liu, H., Wang, Z., Lei, T., Li, Y., & Hou, T. (2018). Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes. RNA (New York, N.Y.), 24(9), 1183–1194. https://doi.org/10.1261/rna.065896.118
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • da Silva, J. H. S., Simas, N. K., Alviano, C. S., Alviano, D. S., Ventura, J. A., de Lima, E. J., Seabra, S. H., & Kuster, R. M. (2018). Anti- Escherichia coli activity of extracts from Schinus terebinthifolius fruits and leaves. Natural Product Research, 32(11), 1365–1368. https://doi.org/10.1080/14786419.2017.1344657
  • de Oliveira, V. M., da Rocha, M. N., Magalhães, E. P., da Silva Mendes, F. R., Marinho, M. M., de Menezes, R. R. P. P. B., Sampaio, T. L., Dos Santos, H. S., Martins, A. M. C., & Marinho, E. S. (2021). Computational approach towards the design of artemisinin–thymoquinone hybrids against main protease of SARS-COV-2. Future Journal of Pharmaceutical Sciences, 7(1), 185. https://doi.org/10.1186/s43094-021-00334-z
  • Diaza, R. G., Manganelli, S., Esposito, A., Roncaglioni, A., Manganaro, A., & Benfenati, E. (2015). Comparison of in silico tools for evaluating rat oral acute toxicity. SAR and QSAR in Environmental Research, 26(1), 1–27. https://doi.org/10.1080/1062936X.2014.977819
  • do Nascimento, J. E. T., Rodrigues, A. L. M., de Lisboa, D. S., Liberato, H. R., Falcão, M. J. C., da Silva, C. R., Nobre Júnior, H. V., Braz Filho, R., de Paula Junior, V. F., Alves, D. R., & de Morais, S. M. (2018). Chemical composition and antifungal in vitro and in silico, antioxidant, and anticholinesterase activities of extracts and constituents of Ouratea fieldingiana (DC.) Baill. Evidence-Based Complementary and Alternative Medicine : eCAM, 2018, 1748412–1748487. https://doi.org/10.1155/2018/1748487
  • Dos Santos Souza, C., Grangeiro, M. S., Lima Pereira, E. P., Dos Santos, C. C., da Silva, A. B., Sampaio, G. P., Ribeiro Figueiredo, D. D., David, J. M., David, J. P., da Silva, V. D. A., Butt, A. M., & Lima Costa, S. (2018). Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicology, 65, 85–97. https://doi.org/10.1016/j.neuro.2018.02.001
  • Ehrlich, L. P., Nilges, M., & Wade, R. C. (2005). The impact of protein flexibility on protein-protein docking. Proteins Struct Funct Bioinforma, 58(1), 126–133. https://doi.org/10.1002/prot.20272
  • Erickson, J. A., Jalaie, M., Robertson, D. H., Lewis, R. A., & Vieth, M. (2004). Lessons in molecular recognition: The effects of ligand and protein flexibility on molecular docking accuracy. Journal of Medicinal Chemistry, 47(1), 45–55. https://doi.org/10.1021/jm030209y
  • Fakhri, S., Abbaszadeh, F., Jorjani, M., & Pourgholami, M. H. (2021). The effects of anticancer medicinal herbs on vascular endothelial growth factor based on pharmacological aspects: A review study. Nutrition and Cancer, 73(1), 1–15. https://doi.org/10.1080/01635581.2019.1673451
  • Field, M. J., Albe, M., Bret, C., Proust-De Martin, F., & Thomas, A. (2000). The dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials. Journal of Computational Chemistry, 21(12), 1088–1100. https://doi.org/10.1002/1096-987X(200009)21:12 < 1088::AID-JCC5 > 3.0.CO;2-8
  • Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Frota, L. S., Alves, D. R., Marinho, M. M., da Silva, L. P., Almeida Neto, F. W. d Q., Marinho, E. S., & de Morais, S. M. (2021). Antioxidant and anticholinesterase activities of amentoflavone isolated from Ouratea fieldingiana (Gardner) Engl. through in vitro and chemical-quantum studies. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.2017353
  • Gambhir, S. S., Goel, R. K., & Das Gupta, G. (1987). Anti-inflammatory & anti-ulcerogenic activity of amentoflavone. The Indian Journal of Medical Research, 85, 689–693.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Grynberg, N. F., Carvalho, M. G., Velandia, J. R., Oliveira, M. C., Moreira, I. C., Braz-Filho, R., & Echevarria, A. (2002). DNA topoisomerase inhibitors: Biflavonoids from Ouratea species. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas, 35(7), 819–822. https://doi.org/10.1590/S0100-879X2002000700009
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6 < 490::AID-JCC1 > 3.0.CO;2-P
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hou, P.-C., Li, Y.-H., Lin, S.-C., Lin, S.-C., Lee, J.-C., Lin, B.-W., Liou, J.-P., Chang, J.-Y., Kuo, C.-C., Liu, Y.-M., Sun, H. S., & Tsai, S.-J. (2017). Hypoxia-induced downregulation of DUSP-2 phosphatase drives colon cancer stemness. Cancer Research, 77(16), 4305–4316. https://doi.org/10.1158/0008-5472.CAN-16-2990
  • Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., Decrescenzo, G. A., Devraj, R. V., Ellsworth, E., Fobian, Y. M., Gibbs, M. E., Gilles, R. W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., & Zhang, Y. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters, 18(17), 4872–4875. https://doi.org/10.1016/j.bmcl.2008.07.071
  • Huguet, A. I., Máñez, S., & Alcaraz, M. J. (1990). Superoxide scavenging properties of flavonoids in a non-enzymic system. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 45(1–2), 19–24. https://doi.org/10.1515/znc-1990-1-205
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Johnson, T. W., Dress, K. R., & Edwards, M. (2009). Using the Golden Triangle to optimize clearance and oral absorption. Bioorganic & Medicinal Chemistry Letters, 19(19), 5560–5564. https://doi.org/10.1016/j.bmcl.2009.08.045
  • Jung, H. J., Sung, W. S., Yeo, S.-H., Kim, H. S., Lee, I.-S., Woo, E.-R., & Lee, D. G. (2006). Antifungal effect of amentoflavone derived fromSelaginella tamariscina. Archives of Pharmacal Research, 29(9), 746–751. https://doi.org/10.1007/BF02974074
  • Kamisawa, T., Isawa, T., Koike, M., Tsuruta, K., & Okamoto, A. (1995). Hematogenous metastases of pancreatic ductal carcinoma. Pancreas, 11(4), 345–349. https://doi.org/10.1097/00006676-199511000-00005
  • Kim, H. K., Son, K. H., Chang, H. W., Kang, S. S., & Kim, H. P. (1998). Amentoflavone, a plant biflavone: A new potential anti-inflammatory agent. Archives of Pharmacal Research, 21(4), 406–410. https://doi.org/10.1007/BF02974634
  • Kroemer, G., & Pouyssegur, J. (2008). Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell, 13(6), 472–482. https://doi.org/10.1016/j.ccr.2008.05.005
  • Lee, J. S., Lee, M. S., Oh, W. K., & Sul, J. Y. (2009). Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells. Biological & Pharmaceutical Bulletin, 32(8), 1427–1432. https://doi.org/10.1248/bpb.32.1427
  • Lin, Y. M., Flavin, M. T., Cassidy, C. S., Mar, A., & Chen, F. C. (2001). Biflavonoids as novel antituberculosis agents. Bioorganic & Medicinal Chemistry Letters, 11(16), 2101–2104. https://doi.org/10.1016/S0960-894X(01)00382-1
  • Ma, C., Guo, Y., Zhang, Y., Duo, A., Jia, Y., Liu, C., & Li, B. (2018). PAFAH1B2 is a HIF1a target gene and promotes metastasis in pancreatic cancer. Biochemical and Biophysical Research Communications, 501(3), 654–660. https://doi.org/10.1016/j.bbrc.2018.05.039
  • Ma, S. C., But, P. P., Ooi, V. E., He, Y. H., Lee, S. H., Lee, S. F., & Lin, R. C. (2001). Antiviral amentoflavone from Selaginella sinensis. Biological & Pharmaceutical Bulletin, 24(3), 311–312. https://doi.org/10.1248/bpb.24.311
  • MacKerell, A. D., Banavali, N., & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257–265. https://doi.org/10.1002/1097-0282(2000)56:4 < 257::AID-BIP10029 > 3.0.CO;2-W
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256z43
  • Mostafa, N. M., Ashour, M. L., Eldahshan, O. A., & Singab, A. N. B. (2016). Cytotoxic activity and molecular docking of a novel biflavonoid isolated from Jacaranda acutifolia (Bignoniaceae). Natural Product Research, 30(18), 2093–2100. https://doi.org/10.1080/14786419.2015.1114938
  • Mostafa, N., Eldahshan, O., El-Beshbishy, H., & Singab, A. (2017). Hepatoprotective, antihyperglycemic and cytotoxic activities of Jacaranda acutifolia leaf extract. Medicinal and Aromatic Plants, 6, 2167–0412.
  • Muthiah, I., Rajendran, K., Dhanaraj, P., & Vallinayagam, S. (2021). In silico structure prediction, molecular docking and dynamic simulation studies on G Protein-Coupled Receptor 116: A novel insight into breast cancer therapy. Journal of Biomolecular Structure & Dynamics, 39(13), 4807–4815. https://doi.org/10.1080/07391102.2020.1783365
  • Neagu, M., Constantin, C., Popescu, I. D., Zipeto, D., Tzanakakis, G., Nikitovic, D., Fenga, C., Stratakis, C. A., Spandidos, D. A., & Tsatsakis, A. M. (2019). Inflammation and metabolism in cancer cell—Mitochondria key player. Frontiers in Oncology, 9, 348. https://doi.org/10.3389/fonc.2019.00348
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Ostergaard, L., Tietze, A., Nielsen, T., Drasbek, K. R., Mouridsen, K., Jespersen, S. N., & Horsman, M. R. (2013). The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. Cancer Research, 73(18), 5618–5624. https://doi.org/10.1158/0008-5472.CAN-13-0964
  • Paulsen, B. S., Souza, C. S., Chicaybam, L., Bonamino, M. H., Bahia, M., Costa, S. L., Borges, H. L., & Rehen, S. K. (2011). Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells. Stem Cells and Development, 20(10), 1711–1721. https://doi.org/10.1089/scd.2010.0446
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science : A Publication of the Protein Society, 30(1), 70–82. https://doi.org/10.1002/pro.3943
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Pires, D. V., Kaminskas, L. M., & Ascher, D. B. (2018). Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. Methods Mol Biol., 1762, 271-284. https://doi.org/10.1007/978-1-4939-7756-7_14.
  • Puig, T., Vázquez-Martín, A., Relat, J., Pétriz, J., Menéndez, J. A., Porta, R., Casals, G., Marrero, P. F., Haro, D., Brunet, J., & Colomer, R. (2008). Fatty acid metabolism in breast cancer cells: Differential inhibitory effects of epigallocatechin gallate (EGCG) and C75. Breast Cancer Research and Treatment, 109(3), 471–479. https://doi.org/10.1007/s10549-007-9678-5
  • Radchenko, E. V., Rulev, Y. A., Safanyaev, A. Y., Palyulin, V. A., & Zefirov, N. S. (2017). Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components. Doklady. Biochemistry and Biophysics, 473(1), 128–131. https://doi.org/10.1134/S1607672917020107
  • Ravnik, Z., Muthiah, I., & Dhanaraj, P. (2021). Computational studies on bacterial secondary metabolites against breast cancer. Journal of Biomolecular Structure & Dynamics, 39(18), 7056–7064. https://doi.org/10.1080/07391102.2020.1805361
  • Saúde, M. D. (2021). Câncer de pâncreas. Instituto Nacional de Câncer - INCA. https://www.inca.gov.br/tipos-de-cancer/cancer-de-pancreas
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics (Oxford, England), 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150
  • Tiwari, A., Tashiro, K., Dixit, A., Soni, A., Vogel, K., Hall, B., Shafqat, I., Slaughter, J., Param, N., Le, A., Saunders, E., Paithane, U., Garcia, G., Campos, A. R., Zettervall, J., Carlson, M., Starr, T. K., Marahrens, Y., Deshpande, A. J., … Bagchi, A. (2020). Loss of HIF1A from pancreatic cancer cells increases expression of PPP1R1B and degradation of p53 to promote invasion and metastasis. Gastroenterology, 159(5), 1882–1897.e5. https://doi.org/10.1053/j.gastro.2020.07.046
  • Tordera, M., Ferrándiz, M. L., & Alcaraz, M. J. (1994). Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 49(3–4), 235–240. https://doi.org/10.1515/znc-1994-3-412
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, P. (2005). XMGRACE, version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2016). Central nervous system multiparameter optimization desirability: Application in drug discovery. ACS Chemical Neuroscience, 7(6), 767–775. https://doi.org/10.1021/acschemneuro.6b00029
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2018). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 1–18. https://doi.org/10.3389/fmolb.2017.00087
  • Yeh, C.-W., Chen, W.-J., Chiang, C.-T., Lin-Shiau, S.-Y., & Lin, J.-K. (2003). Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: A possible mechanism for their hypolipidemic effects. The Pharmacogenomics Journal, 3(5), 267–276. https://doi.org/10.1038/sj.tpj.6500192
  • Yu, K., Geng, X., Chen, M., Zhang, J., Wang, B., Ilic, K., & Tong, W. (2014). High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury. Drug Metabolism and Disposition, 42(4), 744–750. https://doi.org/10.1124/dmd.113.056267
  • Zhao, T., Ren, H., Li, J., Chen, J., Zhang, H., Xin, W., Sun, Y., Sun, L., Yang, Y., Sun, J., Wang, X., Gao, S., Huang, C., Zhang, H., Yang, S., & Hao, J. (2015). LASP1 is a HIF1α target gene critical for metastasis of pancreatic cancer. Cancer Research, 75(1), 111–119. https://doi.org/10.1158/0008-5472.CAN-14-2040
  • Zheng, M., Luo, X., Shen, Q., Wang, Y., Du, Y., Zhu, W., & Jiang, H. (2009). Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics (Oxford, England), 25(10), 1251–1258. https://doi.org/10.1093/bioinformatics/btp140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.