119
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Analysis of medicinal and therapeutic potential of Withania somnifera derivatives against COVID-19

ORCID Icon, , , , , , , & show all
Pages 6883-6893 | Received 27 Feb 2022, Accepted 08 Aug 2022, Published online: 22 Aug 2022

References

  • Adedeji, A. O., Marchand, B., Te Velthuis, A. J. W., Snijder, E. J., Weiss, S., Eoff, R. L., Singh, K., & Sarafianos, S. G. (2012). Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One, 7(5), e36521. https://doi.org/10.1371/journal.pone.0036521.
  • Ahn, D. G., Choi, J. K., Taylor, D. R., & Oh, J. W. (2012). Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Archives of Virology, 157(11), 2095–2104. https://doi.org/10.1007/s00705-012-1404-x.
  • Aronson, J. K. (2020). Coronaviruses – A general introduction. Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford.
  • Baez-Santos, Y. M., St John, S. E., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhardwaj, K., Palaninathan, S., Alcantara, J. M. O., Yi, L. L., Guarino, L., Sacchettini, J. C., & Kao, C. C. (2008). Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15. The Journal of Biological Chemistry, 283(6), 3655–3664. https://doi.org/10.1074/jbc.M708375200.
  • Bonanno, J. B., Fowler, R., Gupta, S., Hendle, J., Lorimer, D., Romero, R., Sauder, J. M., Wei, C. L., Liu, E. T., Burley, S. K., & Harris, T. (2003). X-ray crystal structure of the SARS coronavirus main protease. Rcsb Pdb. doi. https://doi.org/10.2210/pdb1q2w/pdb
  • Cai, Z., Zhang, G., Tang, B., Liu, Y., Fu, X., & Zhang, X. (2015). Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: computational study. Cell Biochemistry and Biophysics, 72(3), 727–739. https://doi.org/10.1007/s12013-015-0524-9.
  • Chan, J. F., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C. Y., Poon, R. W. S., Tsoi, H. W., Lo, S. K. F., Chan, K. H., Poon, V. K. M., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C. C., Chen, H., Hui, C. K. M., & Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Deng, X., & Baker, S. C. (2018). An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology, 517, 157–163. https://doi.org/10.1016/j.virol.2017.12.024
  • Dhawan, M., , D., Parmar, M., , Sharun, k., ., Tiwari, R., , Bilal, M., & Dhama. K.(2021). Medicinal and therapeutic potential of withanolides from Withania somnifera against COVID-19. Journal of Applied Pharmaceutical Science, 11, 006–013. https://doi.org/10.7324/JAPS.2021.110402
  • Doublie, S., & Ellenberger, T. (1998). The mechanism of action of T7 DNA polymerase. Current Opinion in Structural Biology, 8(6), 704–712. https://doi.org/10.1016/S0959-440X(98)80089-4
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009). The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nature Reviews. Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090.
  • Elfiky, A. A. (2020). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 248, 117477. https://doi.org/10.1016/j.lfs.2020.117477.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Cari-Cato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vereven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M.,Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, o., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. (2009). Gaussian, Inc. Gaussian 09, revision A.02. Gaussian, Inc.
  • Ghosh, A. K., Takayama, J., Rao, K. V., Ratia, K., Chaudhuri, R., Mulhearn, D. C., Lee, H., Nichols, D. B., Baliji, S., Baker, S. C., Johnson, M. E., & Mesecar, A. D. (2010). Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors: Design, synthesis, protein-ligand X-ray structure and biological evaluation. Journal of Medicinal Chemistry, 53(13), 4968–4979. https://doi.org/10.1021/jm1004489.
  • Glowacka, I., Bertram, S., Müller, M. A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Tsegaye, T. S., He, Y., Gnirss, K., Niemeyer, D., Schneider, H., Drosten, C., & Pöhlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of Virology, 85(9), 4122–4134. https://doi.org/10.1128/jvi.02232-10.
  • Han, D. P., Lohani, M., & Cho, M. W. (2007). Specific asparagine-linked glycosylation sites are critical for DC-SIGN-and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. Journal of Virology, 81(21), 12029–12039. https://doi.org/10.1128/JVI.00315-07
  • Hilgenfeld, R. (2014). From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. The FEBS Journal, 281(18), 4085–4096. https://doi.org/10.1128/JVI.00315-07.
  • Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S. I., Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M. A., Weldon, W. C., Biggs, H. M., Uyeki, T. M., Pillai, S. K. (2020). First Case of 2019 Novel Coronavirus in the United States. The New England Journal of Medicine, 382(10), 929–936. https://doi.org/10.1056/NEJMoa2001191.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5.
  • Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., & Nagata, N. (2019). TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol, 93, e01815–18. https://doi.org/10.1128/JVI.01815-18
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of mpro from COVID-19 virus and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kahn, J. S., & McIntosh, K. (2005). History and recent advances in coronavirus discovery. The Pediatric Infectious Disease Journal, 24(11 Suppl), S223–S227. https://doi.org/10.1097/01.inf.0000188166.17324.60.
  • Kalra, R. S., Kumar, V., Dhanjal, J. K., Garg, S., Li, X., Kaul, S. C., Sundar, D., & Wadhwa, R. (2021). COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: Insights from computational and biochemical assays. Journal of Biomolecular Structure and Dynamics, 2, 1–14. https://doi.org/10.1080/07391102.2021.1902858
  • Kim, J. M., Chung, Y. S., Jo, H. J., Lee, N. J., Kim, M. S., Woo, S. H., Park, S., Kim, J. W., Kim, H. M., & Han, M. G. (2020). Identification of coronavirus isolated from a patient in Korea with covid-19. Osong Public Health and Research Perspectives, 11(1), 3–7. https://doi.org/10.24171/j.phrp.2020.11.1.02.
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–1213. https://doi.org/10.1093/nar/gkv951
  • Kim, Y., Jedrzejczak, R., Maltseva, N. I., Wilamowski, M., Endres, M., Godzik, A., Michalska, K., & Joachimiak, A. (2020). Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Science: A Publication of the Protein Society, 29(7), 1596–1605. https://doi.org/10.1002/pro.5560040401.
  • Kirtikar, K. R., & Basu, B. D. (1991). Indian Medicinal Plants, 2nd edn, Periodical experts book agency. Delhi. 1991; 2(2):1488.
  • Kohnke, B., Kutzner, C., & Grubm€uller, H. (2020). A GPU-accelerated fast multipole method for GROMACS: Performance and accuracy. Journal of Chemical Theory and Computation, 16(11), 6938–6949. https://doi.org/10.1021/acs.jctc.0c00744
  • Kulkarni, S. K., & Dhir, A. (2008). Withania somnifera: An Indian ginseng. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(5), 1093–1105. https://doi.org/10.1021/acs.jctc.0c00744
  • Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure and Dynamics, 39, 1–13. https://doi.org/10.1080/07391102.2020.1772108
  • Lehmann, K. C., Gulyaeva, A., Zevenhoven-Dobbe, J. C., Janssen, G. M. C., Ruben, M., Overkleeft, H. S., van Veelen, P. A., Samborskiy, D. V., Kravchenko, A. A., Leontovich, A. M., Sidorov, I. A., Snijder, E. J., Posthuma, C. C., & Gorbalenya, A. E. (2015). Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Research, 43(17), 8416–8434. https://doi.org/10.1093/nar/gkv838.
  • Lengauer, T., & Rarey, M. (1996). Computational methods for biomolecular docking. Current Opinion in Structural Biology, 6(3), 402–406. https://doi.org/10.1016/S0959-440X(96)80061-3
  • Leung, J. M., Yang, C. X., & Sin, D. D. (2020). COVID-19 and nicotine as a mediator of ACE-2. European Respiratory Journal, 55(6), 2001261. https://doi.org/10.1183/13993003.01261-2020
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  • Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., Wong, S. K., Huang, I. C., Xu, K., Vasilieva, N., Murakami, A., He, Y., Marasco, W. A., Guan, Y., Choe, H., & Farzan, M. (2005). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. The EMBO Journal, 24(8), 1634–1643. https://doi.org/10.1146/annurev-virology-110615-042301.
  • Liu, X., & Wang, X. J. (2020). Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 47(2), 119-e121. https://doi.org/10.1016/j.jgg.2020.02.001.
  • Liu, X., Zhang, B., Jin, Z., Yang, H., & Rao, Z. (2020). The crystal structure of 2019-nCoV main protease in complex with an inhibitor N3. Rcsb Pdb,. https://doi.org/10.2210/pdb6LU7/pdb
  • Mandlik Ingawale, D. S., & Namdeo, A. G. (2020). Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. Journal of Dietary Supplements, 18, 1–44. https://doi.org/10.1080/19390211.2020.1741484
  • Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazón, J. (2009). Steroidal Lactones FROM Withania somnifera, an ancient plant for novel medicine. Molecules (Basel, Switzerland), 14(7), 2373–2393. https://doi.org/10.3390/molecules14072373.
  • Mozaffarian, V. (2003). Trees and shrubs of Iran (pp. 874–877). Tehran, Iran: Farhange Moaser.
  • Murza, A., Dion, S. P., Boudreault, P. L., Désilets, A., Leduc, R., & Marsault, É. (2020). Inhibitors of Type II transmembrane serine proteases in the treatment of diseases of the respiratory tract – A review of patent literature. Expert Opinion on Therapeutic Patents, 30(11), 807–824. https://doi.org/10.1080/13543776.2020.1817390.
  • Nascimento, I. J. B. d., Cacic, N., Abdulazeem, H. M., Groote, T. v., Jayarajah, U., Weerasekara, I., Esfahani, M. A., Civile, V. T., Marusic, A., Jeroncic, A., Junior, N. C., Pericic, T. P., Zakarija-Grkovic, I., Guimarães, S. M. M., Bragazzi, N. L., Bjorklund, M., Sofi-Mahmudi, A., Altujjar, M., Tian, M., Arcani, D. M. C., O Mathuna, D. P., Marcolino, M. S. (2020). Novel coronavirus. (2019-nCoV) infection in humans: a scoping review and meta-analysis. Journal of Clinical Medicine, 9(4), 941. https://doi.org/10.3390/jcm9040941
  • Paulsson-Habegger, L., Snabaitis, A. K., & Wren, S. P. (2021). Enzyme inhibition as a potential therapeutic strategy to treat COVID-19 infection. Bioorganic & Medicinal Chemistry, 48, 116389. https://doi.org/10.1016/j.bmc.2021.116389.
  • Remya, C., Dileep, K. V., Variayr, E. J., & Sadasivan, C. (2016). An in silico guided identification of nAChR agonists from Withania somnifera. Frontiers in Life Science, 9(3), 201–213. https://doi.org/10.1080/21553769.2016.1207569
  • Saberinasab, A., Raissi, H., & Hashemzadeh, H. (2020). Predicting the efficiency of polyethylene glycol-functionalized graphene in delivery of temozolomide anticancer drug and investigating the effect of pH on the drug release process: DFT and free energy calculations. Molecular Simulation, 46(18), 1474–1482. https://doi.org/10.1080/08927022.2020.1845910
  • Saberinasab, A., Raissi, H., & Hashemzadeh, H. (2021). Molecular insight into the role of polyethylene glycol and cholesterol on the performance of graphene-based nanomaterials in Blood-brain barrier delivery. Journal of Molecular Liquids, 341, 117446. https://doi.org/10.1016/j.molliq.2021.117446
  • Sapra, L., Bhardwaj, A., Azam, Z., Madhry, D., Verma, B., Rathore, S., & Srivastava, R. K. (2021). Phytotherapy for treatment of cytokine storm in COVID-19. Fronts in Bioscience-Landmark, 26, 51–57.
  • Schrodinger (2017). Release, Schr€odinger. 4: Prime. Schrodinger, LLC. https://doi.org/10.52586/4924
  • Sevajol, M., Subissi, L., Decroly, E., Canard, B., & Imbert, I. (2014). Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Research, 194, 90–99. https://doi.org/10.1016/j.virusres.2014.10.008.
  • Spinello, A., Saltalamacchia, A., & Magistrato, A. (2020). Is the rigidity of SARS-CoV2 spike receptor-binding motif the hallmark for its enhanced infectivity? Insights from all-atom simulations. The Journal of Physical Chemistry Letters, 11(12), 4785–4790. https://doi.org/10.1021/acs.jpclett.0c01148.
  • Straughn, A. R., & Kakar, S. S. (2020). Withaferin A: A potential therapeutic agent against COVID-19 infection. Journal of Ovarian Research, 13(1), 79. https://doi.org/10.1186/s13048-020-00684-x
  • Subissi, L., Posthuma, C. C., Collet, A., Zevenhoven-Dobbe, J. C., Gorbalenya, A. E., Decroly, E., Snijder, E. J., Canard, B., & Imbert, I. (2014). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America, 111, 3900–3909. https://doi.org/10.1073/pnas.1323705111
  • Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
  • Tandon, N., & Yadav, S. S. (2020). Safety and clinical effectiveness of Withania Somnifera (Linn.) dunal root in human ailments. Journal of Ethnopharmacology, 255, 112768. https://doi.org/10.1016/j.jep.2020.112768.
  • Tiwari, R., Chakrabort, S., Saminathan, M., Dhama, K., & Singh, S. V. (2014). Ashwagandha (Withania somnifera): Role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: a review. Journal of Biological Sciences, 14(2), 77–94. https://doi.org/10.3923/jbs.2014.77.94
  • Tong, X., Zhang, H., & Timmerman, B. N. (2011). Chlorinated withanolides from Withania somnifera. Phytochemistry Letters, 4(4), 411–414. https://doi.org/10.1016/j.phytol.2011.04.016.
  • Tripathi, M. K., Singh, P., Sharma, S., Singh, T. P., Ethayathulla, A. S., & Kaur, P. (2021). Ethayathulla AS, Kaur P Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. Journal of Biomolecular Structure & Dynamics, 39(15), 5668–5681. https://doi.org/10.1080/07391102.2020.1790425.
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, Z., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1016/S0140-6736(20)30183-5.
  • Wu, K., Li, W., Peng, G., & Li, F. (2009). Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 19970–19974. https://doi.org/10.1073/pnas.0908837106.
  • Yuan, L., Chen, Z., Song, S., Wang, S., Tian, C., Xing, G., Chen, X., Xiao, Z. X., He, F., & Zhang, L. (2015). P53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. The Journal of Biological Chemistry, 290(5), 3172–3182. https://doi.org/10.1074/jbc.M114.619890.
  • Zhang, L., Li, L., Yan, L., Ming, Z., Jia, Z., Lou, Z., & Rao, Z. (2018). Structural and biochemical characterization of endoribonuclease Nsp15 encoded by Middle East respiratory syndrome coronavirus. Journal of Virology, 92(22), e0089. https://doi.org/10.1128/JVI.00893-18
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405.
  • Ziebuhr, J. (2005). The coronavirus replicase. Current Topics in Microbiology and Immunology, 287, 57–94. https://doi.org/10.1007/3-540-26765-4_3.
  • Zumla, A., Chan, J. F. W., Azhar, E. I., Hui, D. S. C., & Yuen, K. Y. (2016). Coronaviruses – Drug discovery and therapeutic options. Nature Reviews. Drug Discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.