212
Views
1
CrossRef citations to date
0
Altmetric
Review Article

2D-QSAR, docking, molecular dynamics, studies of PF-07321332 analogues to identify alternative inhibitors against 3CLpro enzyme in SARS-CoV disease

ORCID Icon, & ORCID Icon
Pages 6991-7000 | Received 30 Mar 2022, Accepted 10 Aug 2022, Published online: 18 Aug 2022

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294
  • Agrawal, V., & Khadikar, P. (2001). QSAR prediction of toxicity of nitrobenzenes. Bioorganic & Medicinal Chemistry, 9(11), 3035–3040. https://doi.org/10.1016/S0968-0896(01)00211-5
  • Ahmad, B., Batool, M., Ain, Q. U., Kim, M. S., & Choi, S. (2021). Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. International Journal of Molecular Sciences, 22(17), 9124. https://doi.org/10.3390/ijms22179124
  • Alves, V. M., Bobrowski, T., Melo‐Filho, C. C., Korn, D., Auerbach, S., Schmitt, C., Muratov, E. N., & Tropsha, A. (2021). QSAR modeling of SARS‐CoV Mpro inhibitors identifies sufugolix, cenicriviroc, proglumetacin, and other drugs as candidates for repurposing against SARS‐CoV‐2. Molecular Informatics, 40(1), 2000113. https://doi.org/10.1002/minf.202000113
  • Chen, X., Liu, M., & Gilson, M. K. (2001). BindingDB: A web-accessible molecular recognition database. Combinatorial Chemistry & High Throughput Screening, 4(8), 719–725. https://doi.org/10.2174/1386207013330670
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • De Oliveira, D. B., & Gaudio, A. C. (2000). BuildQSAR: A new computer program for QSAR analysis. Quantitative Structure-Activity Relationships, 19(6), 599–601. https://doi.org/10.1002/1521-3838(200012)19:6<599::AID-QSAR599>3.0.CO;2-B
  • Dos Santos, A. M., Cianni, L., De Vita, D., Rosini, F., Leitão, A., Laughton, C. A., Lameira, J., & Montanari, C. A. (2018). Experimental study and computational modelling of cruzain cysteine protease inhibition by dipeptidyl nitriles. Physical Chemistry Chemical Physics : PCCP, 20(37), 24317–24328. https://doi.org/10.1039/c8cp03320j
  • El Aissouq, A., Chedadi, O., Bouachrine, M., Ouammou, A., & Khalil, F. (2022). Development of novel monoamine oxidase B (MAO-B) inhibitors by combined application of docking-based alignment, 3D-QSAR, ADMET prediction, molecular dynamics simulation, and MM_GBSA binding free energy. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2022.2071341
  • Garson, D. G. (1991). Interpreting neural network connection weights. AI EXPERT,6(4), 46–51.
  • Goh, A. T. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3), 143–151. https://doi.org/10.1016/0954-1810(94)00011-S
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2021). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(9), 3213–3224. https://doi.org/10.1080/07391102.2020.1761883
  • Ivanov, J., Polshakov, D., Kato-Weinstein, J., Zhou, Q., Li, Y., Granet, R., Garner, L., Deng, Y., Liu, C., Albaiu, D., Wilson, J., & Aultman, C. (2020). Quantitative structure–activity relationship machine learning models and their applications for identifying viral 3CLpro-and RdRp-targeting compounds as potential therapeutics for COVID-19 and related viral infections. ACS Omega, 5(42), 27344–27358. https://doi.org/10.1021/acsomega.0c03682
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM‐GUI: A web‐based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11(1), 137–148. https://doi.org/10.1080/00401706.1969.10490666
  • Khaldan, A., Bouamrane, S., El-mernissi, R., Maghat, H., Ajana, M. A., Sbai, A., Bouachrine, B., & Lakhlifi, T. (2021). Identification of potential α-glucosidase inhibitors: 3D-QSAR modeling, molecular docking approach. RHAZES: Green and Applied Chemistry, 12, 60–75.
  • Kumar, D., Malviya, R., & Sharma, P. K. (2020). Corona virus: A review of COVID-19. Eurasian Journal of Medicine and Oncology, 4(1), 8–25. https://doi.org/10.14744/ejmo.2020.51418
  • Kumar, V., & Roy, K. (2020). Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases. SAR and QSAR in Environmental Research, 31(7), 511–526. https://doi.org/10.1080/1062936X.2020.1776388
  • Lawrence, I., & Lin, K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255–268. https://doi.org/10.2307/2532051
  • Lindahl, E., Abraham, M. J., Hess, B., & van der Spoel, D. (2020). GROMACS 2020 Manual (Version 2020). Zenodo
  • Liu, Y., Grimm, M., Dai, W-t., Hou, M-c., Xiao, Z.-X., & Cao, Y. (2020). CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 41(1), 138–144. https://doi.org/10.1038/s41401-019-0228-6
  • Mitra, I., Saha, A., & Roy, K. (2010). Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Molecular Simulation, 36(13), 1067–1079. https://doi.org/10.1080/08927022.2010.503326
  • NIH. COVID-19 treatment guidelines panel (2022). https://www.covid19treatmentguidelines.nih.gov/management/clinical-management-of-adults/hospitalized-adults--therapeutic-management/t/
  • Nile, S. H., Nile, A., Qiu, J., Li, L., Jia, X., & Kai, G. (2020). COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine & Growth Factor Reviews, 53, 66–70. https://doi.org/10.1016/j.cytogfr.2020.05.002
  • OECD. (2014). Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models.
  • Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring rm2 metrics for validation of QSPR models. Chemometrics and Intelligent Laboratory Systems, 107(1), 194–205. https://doi.org/10.1016/j.chemolab.2011.03.011
  • Owen, D. R., Allerton, C. M. N., Anderson, A. S., Aschenbrenner, L., Avery, M., Berritt, S., Boras, B., Cardin, R. D., Carlo, A., Coffman, K. J., Dantonio, A., Di, L., Eng, H., Ferre, R., Gajiwala, K. S., Gibson, S. A., Greasley, S. E., Hurst, B. L., Kadar, E. P., … Zhu, Y. (2021). An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science, 374(6575), 1586–1593. https://doi.org/10.1126/science.abl4784
  • Quinn, R. J., Carroll, A. R., Pham, N. B., Baron, P., Palframan, M. E., Suraweera, L., Pierens, G. K., & Muresan, S. (2008). Developing a drug-like natural product library. Journal of Natural Products, 71(3), 464–468. https://doi.org/10.1021/np070526y
  • Robertson, C. C., Wright, J. S., Carrington, E. J., Perutz, R. N., Hunter, C. A., & Brammer, L. (2017). Hydrogen bonding vs. halogen bonding: The solvent decides. Chemical Science, 8(8), 5392–5398. https://doi.org/10.1039/c7sc01801k
  • Roy, K., Kar, S., & Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory Systems, 145, 22–29. https://doi.org/10.1016/j.chemolab.2015.04.013
  • Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N., & Kabir, H. (2012). Comparative studies on some metrics for external validation of QSPR models. Journal of Chemical Information and Modeling, 52(2), 396–408. https://doi.org/10.1021/ci200520g
  • Sahigara, F., Ballabio, D., Todeschini, R., & Consonni, V. (2013). Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions. Journal of Cheminformatics, 5(1), 27–29. https://doi.org/10.1186/1758-2946-5-27
  • Sahigara, F., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V., & Todeschini, R. (2012). Comparison of different approaches to define the applicability domain of QSAR models. Molecules, 17(5), 4791–4810. https://doi.org/10.3390/molecules17054791
  • Schuurmann, G., Ebert, R.-U., Chen, J., Wang, B., & Kuhne, R. (2008). External validation and prediction employing the predictive squared correlation coefficient – Test set activity mean vs training set activity mean. Journal of Chemical Information and Modeling, 48(11), 2140–2145. https://doi.org/10.1021/ci800253u
  • Skariyachan, S., Gopal, D., Muddebihalkar, A. G., Uttarkar, A., & Niranjan, V. (2021). Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies. Computers in Biology and Medicine, 132, 104325. https://doi.org/10.1016/j.compbiomed.2021.104325
  • Stewart, J. J. P. (2016). MOPAC2016.
  • Tejera, E., Munteanu, C. R., López-Cortés, A., Cabrera-Andrade, A., & Pérez-Castillo, Y. (2020). Drugs repurposing using QSAR, docking and molecular dynamics for possible inhibitors of the SARS-CoV-2 Mpro protease. Molecules, 25(21), 5172. https://doi.org/10.3390/molecules25215172
  • Thiel, V., Ivanov, K. A., Putics, Á., Hertzig, T., Schelle, B., Bayer, S., Weißbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E., & Ziebuhr, J. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression. The Journal of General Virology, 84(9), 2305–2315. https://doi.org/10.1099/vir.0.19424-0
  • Toropov, A. A., Carbó-Dorca, R., & Toropova, A. P. (2018). Index of ideality of correlation: New possibilities to validate QSAR: A case study. Structural Chemistry, 29(1), 33–38. https://doi.org/10.1007/s11224-017-0997-9
  • Toropova, A. P., & Toropov, A. A. (2019). Does the index of ideality of correlation detect the better model correctly? Molecular Informatics, 38(8–9), 1800157. https://doi.org/10.1002/minf.201800157
  • Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22(1), 69–77. https://doi.org/10.1002/qsar.200390007
  • Ultra, C. (2014). ChemBioDraw ultra, ver. 14.0
  • Vandyck, K., & Deval, J. (2021). Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Current Opinion in Virology, 49, 36–40. https://doi.org/10.1016/j.coviro.2021.04.006
  • Westberg, M., Su, Y., Zou, X., Ning, L., Hurst, B., Tarbet, B., & Lin, M. Z. (2020). Rational design of a new class of protease inhibitors for the potential treatment of coronavirus diseases. bioRxiv.
  • Yap, C. W. (2011). PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466–1474. https://doi.org/10.1002/jcc.21707
  • Zhao, Y., Fang, C., Zhang, Q., Zhang, R., Zhao, X., Duan, Y., Wang, H., Zhu, Y., Feng, L., Zhao, J., Shao, M., Yang, X., Zhang, L., Peng, C., Yang, K., Ma, D., Rao, Z., Yang, H. (2021). Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein & Cell, 13, 689–693.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.