167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Interdisciplinary in silico studies to understand in-depth molecular level mechanism of drug resistance involving NS3-4A protease of HCV

ORCID Icon & ORCID Icon
Pages 6937-6956 | Received 25 May 2022, Accepted 10 Aug 2022, Published online: 22 Aug 2022

References

  • Amadei, A., Ceruso, M. A., & Di Nola, A. (1999). On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins’ molecular dynamics simulations. Proteins: Structure, Function, and Genetics, 36(4), 419–424. https://doi.org/10.1002/(SICI)1097-0134(19990901)36:4<419::AID-PROT5>3.0.CO;2-U
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Bartenschlager, R. (1997). Candidate targets for hepatitis C virus-specific antiviral therapy. Intervirology, 40(5–6), 378–393. https://doi.org/10.1159/000150570
  • Bartenschlager, R. (1999). The NS3/4A proteinase of the hepatitis C virus: Unravelling structure and function of an unusual enzyme and a prime target for antiviral therapy. Journal of Viral Hepatitis, 6(3), 165–181. https://doi.org/10.1046/j.1365-2893.1999.00152.x
  • Berger, K. L., Lagacé, L., Triki, I., Cartier, M., Marquis, M., Lawetz, C., Bethell, R., Scherer, J., & Kukolj, G. (2013). Viral resistance in hepatitis C virus genotype 1-infected patients receiving the NS3 protease inhibitor faldaprevir (BI 201335) in a phase 1b multiple-rising-dose study. Antimicrobial Agents and Chemotherapy, 57(10), 4928–4936. https://doi.org/10.1128/AAC.00822-13
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688.
  • Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W., & Houghton, M. (1989). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 244(4902), 359–362. https://doi.org/10.1126/science.2523562
  • Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., Hanspers, Kri. s. tina., Isserlin, R., Kelley, R., Killcoyne, S., Lotia, S., Maere, S., Morris, J., Ono, K., Pavlovic, V., … Bader, G. D. (2007). Integration of biological networks and gene expression data using Cytoscape. Nature Protocols, 2(10), 2366–2382.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Di Marco, S., Rizzi, M., Volpari, C., Walsh, M. A., Narjes, F., Colarusso, S., De Francesco, R., Matassa, V. G., & Sollazzo, M. (2000). Inhibition of the hepatitis C virus NS3/4A protease: the crystal structures of two protease-inhibitor complexes. The Journal of Biological Chemistry, 275(10), 7152–7157. https://doi.org/10.1074/jbc.275.10.7152
  • Doncheva, N. T., Assenov, Y., Domingues, F. S., & Albrecht, M. (2012). Topological analysis and interactive visualization of biological networks and protein structures. Nature Protocols, 7(4), 670–685.
  • Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60(12), 2126–2132. https://doi.org/10.1107/S0907444904019158
  • Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7
  • Gentile, I., Viola, C., Borgia, F., Castaldo, G., & Borgia, G. (2009). Telaprevir: A promising protease inhibitor for the treatment of hepatitis C virus infection. Current Medicinal Chemistry, 16(9), 1115–1121.
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. Journal of Molecular Biology, 330(4), 891–913.
  • Gordon, C. E., Uhlig, K., Lau, J., Schmid, C. H., Levey, A. S., & Wong, J. B. (2008). Interferon treatment in hemodialysis patients with chronic hepatitis C virus infection: A systematic review of the literature and meta-analysis of treatment efficacy and harms. American Journal of Kidney Diseases, 51(2), 263–277.
  • Halfon, P., & Locarnini, S. (2011). Hepatitis C virus resistance to protease inhibitors. Journal of Hepatology, 55(1), 192–206. https://doi.org/10.1016/j.jhep.2011.01.011
  • Hazra, M., & Dubey, R. C. (2021). In silico study of cox protein from P2 type enteric bacteriophages based on sequence, structure and dynamics to understand its functional integrity. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2021.2000496
  • Hazra, S., Kurz, S. G., Wolff, K., Nguyen, L., Bonomo, R. A., & Blanchard, J. S. (2015). Kinetic and structural characterization of the interaction of 6-methylidene penem 2 with the β-lactamase from Mycobacterium tuberculosis. Biochemistry, 54(36), 5657–5664.
  • Hazra, S., Xu, H., & Blanchard, J. S. (2014). Tebipenem, a new carbapenem antibiotic, is a slow substrate that inhibits the β-lactamase from Mycobacterium tuberculosis. Biochemistry, 53(22), 3671–3678. https://doi.org/10.1021/bi500339j
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kakiuchi, N., Komoda, Y., Hijikata, M., & Shimotohno, K. (1997). Cleavage activity of hepatitis C virus serine proteinase. Journal of Biochemistry, 122(4), 749–755. https://doi.org/10.1093/oxfordjournals.jbchem.a021819
  • Kar, P., Lipowsky, R., & Knecht, V. (2011). Importance of polar solvation for cross-reactivity of antibody and its variants with steroids. The Journal of Physical Chemistry. B, 115(23), 7661–7669.
  • Karplus, M., & Kushick, J. N. (1981). Method for estimating the configurational entropy of macromolecules. Macromolecules, 14(2), 325–332. https://doi.org/10.1021/ma50003a019
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897.
  • Kolykhalov, A. A., Mihalik, K., Feinstone, S. M., & Rice, C. M. (2000). Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. Journal of Virology, 74(4), 2046–2051. https://doi.org/10.1128/jvi.74.4.2046-2051.2000
  • Kuhn, B., & Kollman, P. A. (2000). Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. Journal of Medicinal Chemistry, 43(20), 3786–3791.
  • Kukolj, G., Bousquet, C., Dansereau, N., Dô, F., Lagacé, L., Llinàs-Brunet, M., Marquis, M., Massariol, M.-J., Maurice, R., Spickler, C., Thibeault, D., Zhao, S., & White, P. W. (2010). 758 Characterization of resistant mutants selected in vitro by the HCV NS3/4A protease inhibitor BI 201335. Journal of Hepatology, (52), S295. https://doi.org/10.1016/S0168-8278(10)60760-X
  • Kurz, S. G., Hazra, S., Bethel, C. R., Romagnoli, C., Caselli, E., Prati, F., Blanchard, J. S., & Bonomo, R. A. (2015). Inhibiting the β-lactamase of Mycobacterium tuberculosis (Mtb) with novel boronic acid transition-state inhibitors (BATSIs). ACS Infectious Diseases, 1(6), 234–242.
  • Kwo, P. Y. (2012). Boceprevir: a novel nonstructural 3 (NS3) protease inhibitor for the treatment of chronic hepatitis C infection. Therapeutic Advances in Gastroenterology, 5(3), 179–188. https://doi.org/10.1177/1756283X11436317
  • Kwong, A. D., McNair, L., Jacobson, I., & George, S. (2008). Recent progress in the development of selected hepatitis C virus NS3· 4A protease and NS5B polymerase inhibitors. Current Opinion in Pharmacology, 8(5), 522–531.
  • Lemke, C. T., Goudreau, N., Zhao, S., Hucke, O., Thibeault, D., Llinàs-Brunet, M., & White, P. W. (2011). Combined X-ray, NMR, and kinetic analyses reveal uncommon binding characteristics of the hepatitis C virus NS3-NS4A protease inhibitor BI 201335. The Journal of Biological Chemistry, 286(13), 11434–11443. https://doi.org/10.1074/jbc.M110.211417
  • Lill, M. A., & Danielson, M. L. (2011). Computer-aided drug design platform using PyMOL. Journal of Computer-Aided Molecular Design, 25(1), 13–19.
  • Lindenbach, B. D., & Rice, C. M. (2005). Unravelling hepatitis C virus replication from genome to function. Nature, 436(7053), 933–938.
  • Llinàs-Brunet, M., Bailey, M., Déziel, R., Fazal, G., Gorys, V., Goulet, S., Halmos, T., Maurice, R., Poirier, M., Poupart, M. A., Rancourt, J., Thibeault, D., Wernic, D., & Lamarre, D. (1998). Studies on the C-terminal of hexapeptide inhibitors of the hepatitis C virus serine protease. Bioorganic & Medicinal Chemistry Letters, 8(19), 2719–2724. https://doi.org/10.1016/s0960-894x(98)00480-6
  • Manns, M. P., Foster, G. R., Rockstroh, J. K., Zeuzem, S., Zoulim, F., & Houghton, M. (2007). The way forward in HCV treatment—Finding the right path. Nature Reviews Drug Discovery, 6(12), 991–1000. https://doi.org/10.1038/nrd2411
  • Martin, A. J., Vidotto, M., Boscariol, F., Di Domenico, T., Walsh, I., & Tosatto, S. C. (2011). RING: Networking interacting residues, evolutionary information and energetics in protein structures. Bioinformatics (Oxford, England), 27(14), 2003–2005. https://doi.org/10.1093/bioinformatics/btr191
  • Murakawa, K., Esumi, M., Kato, T., Kambara, H., & Shikata, T. (1992). Heterogeneity within the nonstructural protein 5-encoding region of hepatitis C viruses from a single patient. Gene, 117(2), 229–231.
  • Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D Biological Crystallography, 53(3), 240–255. https://doi.org/10.1107/S0907444996012255
  • Nalam, M. N. L., Ali, A., Altman, M. D., Reddy, G. S. K. K., Chellappan, S., Kairys, V., Ozen, A., Cao, H., Gilson, M. K., Tidor, B., Rana, T. M., & Schiffer, C. A. (2010). Evaluating the substrate-envelope hypothesis: Structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance. Journal of Virology, 84(10), 5368–5378. https://doi.org/10.1128/JVI.02531-09
  • Neumann, A. U., Lam, N. P., Dahari, H., Gretch, D. R., Wiley, T. E., Layden, T. J., & Perelson, A. S. (1998). Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science, 282(5386), 103–107. https://doi.org/10.1126/science.282.5386.103
  • Ogata, N., Alter, H. J., Miller, R. H., & Purcell, R. H. (1991). Nucleotide sequence and mutation rate of the H strain of hepatitis C virus. Proceedings of the National Academy of Sciences, 88(8), 3392–3396. https://doi.org/10.1073/pnas.88.8.3392
  • Okamoto, H., Kojima, M., Okada, S.-I., Yoshizawa, H., Iizuka, H., Tanaka, T., Muchmore, E. E., Peterson, D. A., Ito, Y., & Mishiro, S. (1992). Genetic drift of hepatitis C virus during an 8.2-year infection in a chimpanzee: Variability and stability. Virology, 190(2), 894–899. https://doi.org/10.1016/0042-6822(92)90933-G
  • O’Meara, J. A., Lemke, C. T., Godbout, C., Kukolj, G., Lagacé, L., Moreau, B., Thibeault, D., White, P. W., & Llinàs-Brunet, M. (2013). Molecular mechanism by which a potent hepatitis C virus NS3-NS4A protease inhibitor overcomes emergence of resistance. Journal of Biological Chemistry, 288(8), 5673–5681. https://doi.org/10.1074/jbc.M112.439455
  • Pan, D., Xue, W., Zhang, W., Liu, H., & Yao, X. (2012). Understanding the drug resistance mechanism of hepatitis C virus NS3/4A to ITMN-191 due to R155K, A156V, D168A/E mutations: A computational study. Biochimica et Biophysica Acta, 1820(10), 1526–1534. https://doi.org/10.1016/j.bbagen.2012.06.001
  • Paul, M., Hazra, M., Barman, A., & Hazra, S. (2014). Comparative molecular dynamics simulation studies for determining factors contributing to the thermostability of chemotaxis protein “CheY”. Journal of Biomolecular Structure and Dynamics, 32(6), 928–949. https://doi.org/10.1080/07391102.2013.799438
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Potterton, E., Briggs, P., Turkenburg, M., & Dodson, E. (2003). A graphical user interface to the CCP4 program suite. Acta Crystallographica Section D Biological Crystallography, 59(7), 1131–1137. https://doi.org/10.1107/S0907444903008126
  • Rastelli, G., Rio, A. D., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM‐PBSA and MM‐GBSA. Journal of Computational Chemistry, 31(4), 797–810.
  • Rong, L., Dahari, H., Ribeiro, R. M., & Perelson, A. S. (2010). Rapid emergence of protease inhibitor resistance in Hepatitis C virus. Science Translational Medicine, 2(30), 30ra32–30ra32.
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Schechter, I., & Berger, B. (1967). On the size of the active site of proteases. I. Papain. Biochemical and Biophysics Research Communications.
  • Schreiber, R. (2007). Matlab. Scholarpedia, 2(7), 2929. https://doi.org/10.4249/scholarpedia.2929
  • Singh, B., Bulusu, G., & Mitra, A. (2015). Understanding the thermostability and activity of Bacillus subtilis lipase mutants: Insights from molecular dynamics simulations. The Journal of Physical Chemistry. B, 119(2), 392–409.
  • Sitkoff, D., Sharp, K. A., & Honig, B. (1994). Accurate calculation of hydration free energies using macroscopic solvent models. The Journal of Physical Chemistry, 98(7), 1978–1988. https://doi.org/10.1021/j100058a043
  • Swanson, J. M., Henchman, R. H., & McCammon, J. A. (2004). Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophysical Journal, 86(1), 67–74. https://doi.org/10.1016/S0006-3495(04)74084-9
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260.
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174.
  • White, P. W., Llinàs-Brunet, M., Amad, M., Bethell, R. C., Bolger, G., Cordingley, M. G., Duan, J., Garneau, M., Lagacé, L., Thibeault, D., & Kukolj, G. (2010). Preclinical characterization of BI 201335, a C-terminal carboxylic acid inhibitor of the hepatitis C virus NS3-NS4A protease. Antimicrobial Agents and Chemotherapy, 54(11), 4611–4618. https://doi.org/10.1128/AAC.00787-10
  • Xue, W., Pan, D., Yang, Y., Liu, H., & Yao, X. (2012). Molecular modeling study on the resistance mechanism of HCV NS3/4A serine protease mutants R155K, A156V and D168A to TMC435. Antiviral Research, 93(1), 126–137. https://doi.org/10.1016/j.antiviral.2011.11.007
  • Xue, W., Wang, M., Jin, X., Liu, H., & Yao, X. (2012). Understanding the structural and energetic basis of inhibitor and substrate bound to the full-length NS3/4A: Insights from molecular dynamics simulation, binding free energy calculation and network analysis. Molecular bioSystems, 8(10), 2753–2765. https://doi.org/10.1039/c2mb25157d
  • Yoon, J., Blumer, A., & Lee, K. (2006). An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics (Oxford, England), 22(24), 3106–3108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.