161
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Absolute binding free energies of mucroporin and its analog mucroporin-M1 with the heptad repeat 1 domain and RNA-dependent RNA polymerase of SARS-CoV-2

, , , &
Pages 6957-6968 | Received 17 May 2022, Accepted 10 Aug 2022, Published online: 22 Aug 2022

References

  • Abdelrahman, Z., Li, M., & Wang, X. (2020). Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A respiratory viruses. Frontiers in Immunology, 11, 5529099/1–5529099/14. https://doi.org/10.3389/fimmu.2020.552909
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Agarwal, G., & Gabrani, R. (2020). Antiviral peptides: Identification and validation. International Journal of Peptide Research and Therapeutics, 27, 149–168. https://doi.org/10.1007/s10989-020-10072-0.
  • Aldeghi, M., Bluck, J. P., & Biggin, P. C. (2018). Absolute alchemical free energy calculations for ligand binding: A beginner’s guide. Methods in Molecular Biology, 1762, 199–232. https://doi.org/10.1007/978-1-4939-7756-7_11
  • Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S., & Biggin, P. C. (2016). Accurate calculation of the absolute free energy of binding for drug molecules. Chemical Science, 7(1), 207–218. https://doi.org/10.1039/c5sc02678d
  • Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., … Lane, H. C. (2020). Remdesivir for the treatment of Covid-19 – final report. New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/NEJMoa2007764
  • Bennett, C. H. (1976). Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics, 22(2), 245–268. https://doi.org/10.1016/0021-9991(76)90078-4
  • Berendsen, H. J. C., Van der Spoel, D., & Van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications. 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Boresch, S., Tettinger, F., Leitgeb, M., & Karplus, M. (2003). Absolute binding free energies: A quantitative approach for their calculation. The Journal of Physical Chemistry B, 107(35), 9535–9551. https://doi.org/10.1021/jp0217839
  • Bosch, B. J., Martina, B. E. E., Van Der Zee, R., Lepault, J., Haijema, B. J., Versluis, C., Heck, A. J. R., De Groot, R., Osterhaus, A. D. M. E., & Rottier, P. J. M. (2004). Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8455–8460. https://doi.org/10.1073/PNAS.0400576101/SUPPL_FILE/00576FIG10.PDF
  • Bosko, J. T., Todd, B. D., & Sadus, R. J. (2005). Molecular simulation of dendrimers and their mixtures under shear: Comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems. The Journal of Chemical Physics, 123(3), 34905. https://doi.org/10.1063/1.1946749
  • Bouysset, C., & Fiorucci, S. (2021). ProLIF: A library to encode molecular interactions as fingerprints. Journal of Cheminformatics, 13(1), 1–9. https://doi.org/10.1186/s13321-021-00548-6.
  • Boyce, S. E., Mobley, D. L., Rocklin, G. J., Graves, A. P., Dill, K. A., & Shoichet, B. K. (2009). Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. Journal of Molecular Biology, 394(4), 747–763. https://doi.org/10.1016/j.jmb.2009.09.049
  • Chen, Y., Cao, L., Zhong, M., Zhang, Y., Han, C., Li, Q., Yang, J., Zhou, D., Shi, W., He, B., Liu, F., Yu, J., Sun, Y., Cao, Y., Li, Y., Li, W., Guo, D., Cao, Z., & Yan, H. (2012). Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PLoS One, 7(4), e34947–9. https://doi.org/10.1371/journal.pone.0034947
  • Dai, C., Ma, Y., Zhao, Z., Zhao, R., Wang, Q., Wu, Y., Cao, Z., & Li, W. (2008). Mucroporin, the first cationic host defense peptide from the venom of lychas mucronatus. Antimicrobial Agents and Chemotherapy, 52(11), 3967–3972. https://doi.org/10.1128/AAC.00542-08
  • Duboué-Dijon, E., Mason, P. E., Fischer, H. E., & Jungwirth, P. (2018). Hydration and ion pairing in aqueous Mg2+ and Zn2+ solutions: Force-field description aided by neutron scattering experiments and ab initio molecular dynamics simulations. The Journal of Physical Chemistry B, 122(13), 3296–3306. https://doi.org/10.1021/acs.jpcb.7b09612
  • Durana, M. A. R. (2018). Improving the Description of Protein-Protein Association Energy. Universitat de Barcelona.
  • Evans, D. J., & Holian, B. L. (1985). The Nose-Hoover thermostat. Journal of Chemical Physics. 83(8), 4069–4074. https://doi.org/10.1063/1.449071
  • Fiolet, T., Guihur, A., Rebeaud, M. E., Mulot, M., Peiffer-Smadja, N., & Mahamat-Saleh, Y. (2020). Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis. Clinical Microbiology and Infection, 27(1), 19–27. https://doi.org/10.1016/j.cmi.2020.08.022
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (80-) 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Gyimesi, G., Závodszky, P., & Szilágyi, A. (2017). Calculation of configurational entropy differences from conformational ensembles using Gaussian mixtures. Journal of Chemical Theory and Computation, 13(1), 29–41. https://doi.org/10.1021/acs.jctc.6b00837
  • Hansen, N., & Van Gunsteren, W. F. (2014). Practical aspects of free-energy calculations: A review. Journal of Chemical Theory and Computation, 10(7), 2632–2647. https://doi.org/10.1021/ct500161f
  • Harrach, M. F., & Drossel, B. (2014). Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. The Journal of Chemical Physics, 140(17), 174501–174514. https://doi.org/10.1063/1.4872239
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Horby, P. W., Mafham, M., Bell, J. L., Linsell, L., Staplin, N., Emberson, J., Palfreeman, A., Raw, J., Elmahi, E., Prudon, B., Green, C., Carley, S., Chadwick, D., Davies, M., Wise, M. P., Baillie, J. K., Chappell, L. C., Faust, S. N., Jaki, T., … Landray, M. J. (2020). Lopinavir–Ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. The Lancet, 396(10259), 1345–1352. https://doi.org/10.1016/S0140-6736(20)32013-4
  • Horby, P., Mafham, M., Linsell, L., Bell, J. L., Staplin, N., Emberson, J. R., Wiselka, M., Ustianowski, A., Elmahi, E., Prudon, B., Whitehouse, T., Felton, T., Williams, J., Faccenda, J., Underwood, J., Baillie, J. K., Chappell, L. C., Faust, S. N., Jaki, T., … Landray, M. J. (2020). Effect of hydroxychloroquine in hospitalized patients with Covid-19. The New England Journal of Medicine, 383(21), 2030–2040. https://doi.org/10.1056/NEJMoa2022926
  • Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2020). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19, 141–154. https://doi.org/10.1038/s41579-020-00459-7.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VDM: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38, plates, 27–28. https://doi.org/10.1016/0263-7855(96)00018-5
  • Janoš, P., Spinello, A., & Magistrato, A. (2021). All-atom simulations to studying metallodrugs/target interactions. Current Opinion in Chemical Biology, 61, 1–8. https://doi.org/10.1016/j.cbpa.2020.07.005
  • Jiménez-García, B., Roel-Touris, J., Romero-Durana, M., Vidal, M., Jiménez-González, D., & Fernández-Recio, J. (2018). LightDock: A new multi-scale approach to protein-protein docking. Bioinformatics, 34(1), 49–55. https://doi.org/10.1093/bioinformatics/btx555
  • Johnson, A. G., Amin, A. B., Ali, A. R., Hoots, B., Cadwell, B. L., Arora, S., Avoundjian, T., Awofeso, A. O., Barnes, J., Bayoumi, N. S., Busen, K., Chang, C., Cima, M., Crockett, M., Cronquist, A., Davidson, S., Davis, E., Delgadillo, J., Dorabawila, V., … Scobie, H. M. (2022). COVID-19 incidence and death rates among unvaccinated and fully vaccinated adults with and without booster doses during periods of delta and omicron variant emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. Morbidity and Mortality Weekly Report, 71(4), 132–138. https://doi.org/10.15585/mmwr.mm7104e2
  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics. 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kalil, A. C., & Stebbing, J. (2021). Baricitinib: The first immunomodulatory treatment to reduce COVID-19 mortality in a placebo-controlled trial. The Lancet Respiratory Medicine, 9(12), 1349–1351. https://doi.org/10.1016/S2213-2600(21)00358-1
  • Kaminski, G., Friesner, R., Tirado-rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Kilburg, D., & Gallicchio, E. (2018). Assessment of a single decoupling alchemical approach for the calculation of the absolute binding free energies of protein-peptide complexes. Frontiers in Molecular Biosciences, 5, 22. https://doi.org/10.3389/FMOLB.2018.00022/BIBTEX
  • Klimovich, P. V., Shirts, M. R., & Mobley, D. L. (2015). Guidelines for the analysis of free energy calculations. Journal of Computer-Aided Molecular Design, 29(5), 397–411. https://doi.org/10.1007/s10822-015-9840-9
  • Kmietowicz, Z. (2022). Covid-19: WHO recommends Baricitinib and Sotrovimab to treat patients. BMJ, 376, o97. https://doi.org/10.1136/bmj.o97
  • Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence, 3(2), 87–124. https://doi.org/10.1007/s11721-008-0021-5
  • Landrum, G., Tosco, P., Kelley, B., sriniker, Ric, gedeck, Vianello, R., NadineSchneider, Dalke, A., Dan, N., Kawashima, E., Cole, B., Turk, S., Swain, M., AlexanderSavelyev, Cosgrove, D., Vaucher, A., Wójcikowski, M., Jones, G., … Jensen, J. H. (2021). Rdkit/Rdkit: 2021_03_2 (Q1 2021) release. https://doi.org/10.5281/ZENODO.4750957.
  • Li, Q., Zhao, Z., Zhou, D., Chen, Y., Hong, W., Cao, L., Yang, J., Zhang, Y., Shi, W., Cao, Z., Wu, Y., Yan, H., & Li, W. (2011). Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides, 32(7), 1518–1525. https://doi.org/10.1016/j.peptides.2011.05.015
  • Liu, M., Das, A. K., Lincoff, J., Sasmal, S., Cheng, S. Y., Vernon, R. M., Forman-Kay, J. D., & Head-Gordon, T. (2021). Configurational entropy of folded proteins and its importance for intrinsically disordered proteins. International Journal of Molecular Sciences, 22(7), 3420. https://doi.org/10.3390/ijms22073420
  • Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C. R., Xiong, H., Farmar, J., Debnath, A. K., Tien, P., & Jiang, S. (2004). Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors. Mechanisms of Disease, 363(9413), 938–947. https://doi.org/10.1016/S0140-6736(04)15788-7
  • Martínez, L., Borin, I. A., & Skaf, M. S. (2007). Fundamentos de Simulação Por Dinâmica Molecular. In N. H. Morgon and K. Coutinho (Eds.), Métodos de Química Teórica e Modelagem Molecular (pp. 413–452). Physics Bookstore – LF.
  • Mata, É. C. G., Mourão, C. B. F., Rangel, M., & Schwartz, E. F. (2017). Antiviral activity of animal venom peptides and related compounds. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 3–12. https://doi.org/10.1186/s40409-016-0089-0
  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. https://doi.org/10.1002/jcc.21787
  • Nguyen, H. L., Thai, N. Q., Truong, D. T., & Li, M. S. (2020). Remdesivir strongly binds to both RNA-dependent RNA polymerase and main protease of SARS-COV-2: Evidence from molecular simulations. The Journal of Physical Chemistry B, 124(50), 11337–11348. https://doi.org/10.1021/ACS.JPCB.0C07312/SUPPL_FILE/JP0C07312_SI_001.PDF
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics. 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pei, P., Qin, H., Chen, J., Wang, F., He, C., He, S., Hong, B., Liu, K., Qiao, R., Fan, H., Tong, Y., Chen, L., & Luo, S. Z. (2021). Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein. Brief. Bioinform, 22(6), 1–15. https://doi.org/10.1093/BIB/BBAB243.
  • Pirtskhalava, M., Gabrielian, A., Cruz, P., Griggs, H. L., Squires, R. B., Hurt, D. E., Grigolava, M., Chubinidze, M., Gogoladze, G., Vishnepolsky, B., Alekseyev, V., Rosenthal, A., & Tartakovsky, M. (2016). DBAASP v.2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Research, 44(D1), D1104–D1112. https://doi.org/10.1093/nar/gkv1174
  • Pritišanac, I., Vernon, R. M., Moses, A. M., & Forman Kay, J. D. (2019). Entropy and information within intrinsically disordered protein regions. Entropy, 21(7), 662. https://doi.org/10.3390/e21070662
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., Van Der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Rocklin, G. J., Mobley, D. L., Dill, K. A., & Hünenberger, P. H. (2013). Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects. The Journal of Chemical Physics, 139(18), 184103–184132. https://doi.org/10.1063/1.4826261
  • Roel-Touris, J., Bonvin, A. M. J. J., & Jiménez-García, B. (2020). LightDock goes information-driven. Bioinformatics, 36(3), 950–952. https://doi.org/10.1093/bioinformatics/btz642
  • Roel-Touris, J., Jiménez-García, B., & Bonvin, A. M. J. J. (2020). Integrative modeling of membrane-associated protein assemblies. Nature Communications. 11(1), 6210. https://doi.org/10.1038/S41467-020-20076-5.
  • Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Alexandre, A. M., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2021). Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 9(1), 71. https://doi.org/10.3390/pr9010071
  • Schütz, D., Ruiz-Blanco, Y. B., Münch, J., Kirchhoff, F., Sanchez-Garcia, E., & Müller, J. A. (2020). Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 167, 47–65. https://doi.org/10.1016/j.addr.2020.11.007
  • Shirts, M. R., & Chodera, J. D. (2008). Statistically optimal analysis of samples from multiple equilibrium states. The Journal of Chemical Physics, 129(12), 124105–124110. https://doi.org/10.1063/1.2978177
  • Shirts, M. R., & Mobley, D. L. (2013). An introduction to best practices in free energy calculations. In L. Monticelli & E. Salonen (Eds.), Biomolecular Simulations. Methods and Protocols (Vol. 924, pp 271–311). Humana Press. https://doi.org/10.1007/978-1-62703-017-5_11.
  • Shirts, M. R., Mobley, D. L., & Chodera, J. D. (2007). Alchemical free energy calculations: Ready for prime time? In D. C. Spellmeyer & R. Wheeler (Eds.), Annual Reports in Computational Chemistry (Vol. 3, pp. 41–59). Elsevier. https://doi.org/10.1016/S1574-1400(07)03004-6.
  • Singh, N., & Warshel, A. (2010). Absolute binding free energy calculations: On the accuracy of computational scoring of protein–ligand interactions. Proteins, 78(7), 1705–1723. https://doi.org/10.1002/prot.22687
  • Stote, R. H., & Karplus, M. (1995). Zinc binding in proteins and solution: A simple but accurate nonbonded representation. Proteins, 23(1), 12–31. https://doi.org/10.1002/prot.340230104
  • Toukan, K., & Rahman, A. (1985). Molecular-dynamics study of atomic motions in water. Physical Review B, Condensed Matter, 31(5), 2643–2648. https://doi.org/10.1103/physrevb.31.2643
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vilas Boas, L. C. P., Campos, M. L., Berlanda, R. L. A., de Carvalho Neves, N., & Franco, O. L. (2019). Antiviral peptides as promising therapeutic drugs. Cellular and Molecular Life Sciences, 76(18), 3525–3542. https://doi.org/10.1007/s00018-019-03138-w
  • Wang, A. H., Zhang, Z. C., & Li, G. H. (2019). Advances in enhanced sampling molecular dynamics simulations for biomolecules. Chinese Journal of Chemical Physics, 32(3), 277–286. https://doi.org/10.1063/1674-0068/cjcp1905091
  • Wang, J., Alekseenko, A., Kozakov, D., & Miao, Y. (2019). Improved modeling of peptide-protein binding through global docking and accelerated molecular dynamics simulations. Frontiers in Molecular Biosciences, 6, 112. https://doi.org/10.3389/FMOLB.2019.00112/BIBTEX
  • Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C., … Wang, C. (2020). Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet (London, England), 395(10236), 1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9
  • WHO Solidarity Trial Consortium, Pan, H., Peto, R., Henao-Restrepo, A. M., Preziosi, M.-P., Sathiyamoorthy, V., Karim, Q. A., Alejandria, M., García, C. H., Kieny, M.-P., Malekzadeh, R., Murthy, S., Reddy, K. S., Periago, M. R., Abi Hanna, P., Ader, F., Al-Bader, A. M., Alhasawi, A., Allum , E., ˙˙˙ &Swaminathan, S., (2021). Repurposed antiviral drugs for COVID-19 – Interim WHO SOLIDARITY trial results. N Engl J Med, 384(6), 497-511. https://doi.org/10.1056/NEJMoa2023184
  • World Health Organization. (2022). Therapeutics and COVID-19: Living guideline.
  • Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S., & Lu, L. (2020). Inhibition of SARS-CoV-2 (previously 2019-NCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research, 30(4), 343–355. https://doi.org/10.1038/s41422-020-0305-x
  • Xia, S., Yan, L., Xu, W., Agrawal, A. S., Algaissi, A., Tseng, C.-T K., Wang, Q., Du, L., Tan, W., Wilson, I. A., Jiang, S., Yang, B., & Lu, L. (2019). A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Science Advances, 5(4), 1–15. https://doi.org/10.1126/sciadv.aav4580
  • Xia, S., Zhu, Y., Liu, M., Lan, Q., Xu, W., Wu, Y., Ying, T., Liu, S., Shi, Z., Jiang, S., & Lu, L. (2020). Fusion mechanism of 2019-NCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & Molecular Immunology, 17(7), 765–767. https://doi.org/10.1038/s41423-020-0374-2
  • Yin, W., Mao, C., Luan, X., Shen, D. D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. C., Tian, G., Jiang, H. W., Tao, S. C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by Remdesivir. Science (80-), 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560
  • Zhao, Z., Hong, W., Zeng, Z., Wu, Y., Hu, K., Tian, X., Li, W., & Cao, Z. (2012). Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo. The Journal of Biological Chemistry, 287(36), 30181–30190. https://doi.org/10.1074/JBC.M112.370312/ATTACHMENT/44811794-08B0-4603-A968-1C1589D1C560/MMC1.ZIP
  • Zhou, H., & Zhou, Y. (2002). Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Science, 11(11), 2714–2726. https://doi.org/10.1110/ps.0217002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.