424
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Systems biology approach delineates critical pathways associated with disease progression in rheumatoid arthritis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 6969-6990 | Received 29 Oct 2021, Accepted 10 Aug 2022, Published online: 01 Sep 2022

References

  • Abboud, G., Choi, S.-C., Kanda, N., Zeumer-Spataro, L., Roopenian, D. C., & Morel, L. (2018). Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis. Frontiers in Immunology, 9, 1973. https://doi.org/10.3389/fimmu.2018.01973
  • Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics, 76(1), 7.20.1-7.20.41. https://doi.org/10.1002/0471142905.hg0720s76
  • Afrasiabian, S., Mohsenpour, B., Bagheri, K. H., Sigari, N., & Aftabi, K. (2013). Diagnostic value of serum adenosine deaminase level in pulmonary tuberculosis. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 18(3), 252–254.
  • Aicher, W. K., Dinkel, A., Grimbacher, B., Haas, C., Seydlitz-Kurzbach, E. v., Peter, H. H., & Eibel, H. (1999). Serum response elements activate and cAMP responsive elements inhibit expression of transcription factor Egr-1 in synovial fibroblasts of rheumatoid arthritis patients. International Immunology, 11(1), 47–61. https://doi.org/10.1093/intimm/11.1.47
  • Alexander, D., Judex, M., Meyringer, R., Weis-Klemm, M., Gay, S., Müller-Ladner, U., & Aicher, W. K. (2002). Transcription factor Egr-1 activates collagen expression in immortalized fibroblasts or fibrosarcoma cells. 383(12), 1845–1853. https://doi.org/10.1515/BC.2002.208
  • Almutairi, K., Nossent, J., Preen, D., Keen, H., & Inderjeeth, C. (2021). The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review. Rheumatology International, 41(5), 863–877. https://doi.org/10.1007/s00296-020-04731-0
  • Al-Saadany, H. M., Hussein, M. S., Gaber, R. A., & Zaytoun, H. A. (2016). Th-17 cells and serum IL-17 in rheumatoid arthritis patients: Correlation with disease activity and severity. The Egyptian Rheumatologist, 38(1), 1–7. https://doi.org/10.1016/j.ejr.2015.01.001
  • Alunno, A., Carubbi, F., Giacomelli, R., & Gerli, R. (2017). Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets. BMC Rheumatology, 1(1), 3. https://doi.org/10.1186/s41927-017-0001-8
  • Alyssa, T., Brian, P., Gary, F., Elsa, S.-L., & Monica, G. (2020). Role of glutamine metabolism in rheumatoid arthritis fibroblast-like synoviocyte aggressive phenotype. ACR Convergence 2020, 72.
  • Anderson, N. M., Mucka, P., Kern, J. G., & Feng, H. (2018). The emerging role and targetability of the TCA cycle in cancer metabolism. Protein & Cell, 9(2), 216–237. https://doi.org/10.1007/s13238-017-0451-1
  • Baniwal, S. K., Khalid, O., Sir, D., Buchanan, G., Coetzee, G. A., & Frenkel, B. (2009). Repression of Runx2 by androgen receptor (AR) in osteoblasts and prostate cancer cells: AR binds Runx2 and abrogates its recruitment to DNA. Molecular Endocrinology (Baltimore, Md.), 23(8), 1203–1214. https://doi.org/10.1210/me.2008-0470
  • Bhagavatham, S. K. S., Khanchandani, P., Kannan, V., Potikuri, D., Sridharan, D., Pulukool, S. K., Naik, A. A., Dandamudi, R. B., Divi, S. M., Pargaonkar, A., Ray, R., Santha, S. S. R., Seshagiri, P. B., Narasimhan, K., Gumdal, N., & Sivaramakrishnan, V. (2021). Adenosine deaminase modulates metabolic remodeling and orchestrates joint destruction in rheumatoid arthritis. Scientific Reports, 11(1), 15129. https://doi.org/10.1038/s41598-021-94607-5
  • Biniecka, M., Canavan, M., McGarry, T., Gao, W., McCormick, J., Cregan, S., Gallagher, L., Smith, T., Phelan, J. J., Ryan, J., O Sullivan, J., Ng, C. T., Veale, D. J., & Fearon, U. (2016). Dysregulated bioenergetics: a key regulator of joint inflammation. Annals of the Rheumatic Diseases, 75(12), 2192 LP – 2200. https://doi.org/10.1136/annrheumdis-2015-208476
  • Borgo, C., D’Amore, C., Sarno, S., Salvi, M., & Ruzzene, M. (2021). Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduction and Targeted Therapy, 6(1), 183. https://doi.org/10.1038/s41392-021-00567-7
  • Bou Ghanem, E. N., Clark, S., Roggensack, S. E., McIver, S. R., Alcaide, P., Haydon, P. G., & Leong, J. M. (2015). Extracellular adenosine protects against Streptococcus pneumoniae lung infection by regulating pulmonary neutrophil recruitment. PLoS Pathogens, 11(8), e1005126–e1005126. https://doi.org/10.1371/journal.ppat.1005126
  • Bowman, M., Drury, S., Hudson, B., Gleason, M., Qu, W., Lu, Y., Lalla, E., Chitnis, S., Monteiro, J., Stickland, M., Bucciarelli, L., Moser, B., Moxley, G., Itescu, S., Grant, P., Gregersen, P., Stern, D., & Schmidt, A. (2002). RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes and Immunity, 3, 123–135. https://doi.org/10.1038/sj.gene.6363861.
  • Brink, M., Hansson, M., Mathsson, L., Jakobsson, P.-J., Holmdahl, R., Hallmans, G., Stenlund, H., Rönnelid, J., Klareskog, L., & Rantapää-Dahlqvist, S. (2013). Multiplex analyses of antibodies against citrullinated peptides in individuals prior to development of rheumatoid arthritis. Arthritis & Rheumatism, 65(4), 899–910. https://doi.org/10.1002/art.37835
  • Broeren, M. G. A., de Vries, M., Bennink, M. B., Arntz, O. J., Blom, A. B., Koenders, M. I., van Lent, P. L. E. M., van der Kraan, P. M., van den Berg, W. B., & van de Loo, F. A. J. (2015). Disease-regulated gene therapy with anti-inflammatory interleukin-10 under the control of the CXCL10 promoter for the treatment of rheumatoid arthritis. Human Gene Therapy, 27(3), 244–254. https://doi.org/10.1089/hum.2015.127
  • Brunner, J. S., Vulliard, L., Hofmann, M., Kieler, M., Lercher, A., Vogel, A., Russier, M., Brüggenthies, J. B., Kerndl, M., Saferding, V., Niederreiter, B., Junza, A., Frauenstein, A., Scholtysek, C., Mikami, Y., Klavins, K., Krönke, G., Bergthaler, A., O’Shea, J. J., … Schabbauer, G. (2020). Environmental arginine controls multinuclear giant cell metabolism and formation. Nature Communications, 11(1), 431. https://doi.org/10.1038/s41467-020-14285-1
  • Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D., & Guma, M. (2017). Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Research & Therapy, 19(1), 110. https://doi.org/10.1186/s13075-017-1303-3
  • Carlberg, K., Vickovic, S., Ståhl, P. L., Salmén, F., Korotkova, M., Malmström, V., & Lundeberg, J. (2017). 05.16 Transcriptome visualisation of the inflamed rheumatoid arthritis joint. Annals of the Rheumatic Diseases, 76(Suppl 1), A58 LP-A59. https://doi.org/10.1136/annrheumdis-2016-211052.16
  • Casamassimi, A., Federico, A., Rienzo, M., Esposito, S., & Ciccodicola, A. (2017). Transcriptome profiling in human diseases: New advances and perspectives. International Journal of Molecular Sciences, 18(8), 1652. https://doi.org/10.3390/ijms18081652
  • Castro, C., & Gourley, M. (2010). Diagnostic testing and interpretation of tests for autoimmunity. The Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S238–S247. https://doi.org/10.1016/j.jaci.2009.09.041
  • Celardo, I., Antonov, A., Amelio, I., Annicchiarico-Petruzzelli, M., & Melino, G. (2014). p63 transcriptionally regulates the expression of matrix metallopeptidase 13. Oncotarget; Vol 5, No 5.
  • Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., & Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14(1), 128. https://doi.org/10.1186/1471-2105-14-128
  • Chimenti, M. S., Triggianese, P., Conigliaro, P., Candi, E., Melino, G., & Perricone, R. (2015). The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death & Disease, 6(9), e1887–e1887. https://doi.org/10.1038/cddis.2015.246
  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46(W1), W486–W494. https://doi.org/10.1093/nar/gky310
  • Conde, M., Marinho, S. R., Pereira, M. D., e Silva, J. R. L., Saad, M., Sales, C. L., Ho, J., & Kritski, A. (2002). The usefulness of serum adenosine deaminase 2 (ADA2) activity in adults for the diagnosis of pulmonary tuberculosis. Respiratory Medicine, 96 8, 607–610.
  • Coras, R., Murillo-Saich, J. D., & Guma, M. (2020). Circulating pro- and anti-inflammatory metabolites and its potential role in rheumatoid arthritis pathogenesis. Cells, 9(4), 827. https://doi.org/10.3390/cells9040827
  • Cutolo, M. (2009). Androgens in rheumatoid arthritis: When are they effectors? Arthritis Research & Therapy, 11(5), 126. https://doi.org/10.1186/ar2804
  • D’Cruz, L. G., McEleney, K. G., Tan, K. B. C., Shukla, P., Gardiner, P. V, Connolly, P., Conway, C., Cobice, D., & Gibson, D. S. (2020). Clinical and laboratory associations with methotrexate metabolism gene polymorphisms in rheumatoid arthritis. Journal of Personalized Medicine, 10(4), 149. https://doi.org/10.3390/jpm10040149
  • De Baets, G., Van Durme, J., Reumers, J., Maurer-Stroh, S., Vanhee, P., Dopazo, J., Schymkowitz, J., & Rousseau, F. (2012). SNPeffect 4.0: On-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Research, 40(Database issue), D935–D939. https://doi.org/10.1093/nar/gkr996
  • de Jong, T. D., Snoek, T., Mantel, E., van der Laken, C. J., van Vollenhoven, R. F., & Lems, W. F. (2019). Dynamics of the type I interferon response during immunosuppressive therapy in rheumatoid arthritis. Frontiers in Immunology, 10, 902. https://doi.org/10.3389/fimmu.2019.00902
  • Decara, J., Rivera, P., López-Gambero, A. J., Serrano, A., Pavón, F. J., Baixeras, E., Rodríguez de Fonseca, F., & Suárez, J. (2020). Peroxisome proliferator-activated receptors: experimental targeting for the treatment of inflammatory bowel diseases. Frontiers in Pharmacology, 11, 730. https://doi.org/10.3389/fphar.2020.00730
  • Demoruelle, M. K., & Deane, K. D. (2012). Treatment strategies in early rheumatoid arthritis and prevention of rheumatoid arthritis. Current Rheumatology Reports, 14(5), 472–480. https://doi.org/10.1007/s11926-012-0275-1
  • Dong, H., & Bullock, T. N. J. (2014). Metabolic influences that regulate dendritic cell function in tumors. Frontiers in Immunology, 5, 24. https://doi.org/10.3389/fimmu.2014.00024
  • Edilova, M. I., Akram, A., & Abdul-Sater, A. A. (2020). Innate immunity drives pathogenesis of rheumatoid arthritis. Biomedical Journal, 44(2), 172–182. https://doi.org/10.1016/j.bj.2020.06.010
  • Fang, Q., Zhou, C., & Nandakumar, K. S. (2020). Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators of Inflammation, 2020, 3830212. https://doi.org/10.1155/2020/3830212
  • Fearon, U., Hanlon, M. M., Wade, S. M., & Fletcher, J. M. (2019). Altered metabolic pathways regulate synovial inflammation in rheumatoid arthritis. Clinical & Experimental Immunology, 197(2), 170–180. https://doi.org/10.1111/cei.13228
  • Filippo, I., Di Sora, F., Tarasi, A., Leti, W., & Montella, F. (2011). Rheumatoid arthritis as a model of multifactorial genetic disease: A review of the literature. Recenti Progessi in Medicina, 102(4), 175–182. https://doi.org/10.1701/624.7291
  • Fillatreau, S. (2018). B cells and their cytokine activities implications in human diseases. Clinical Immunology, 186, 26–31. https://doi.org/10.1016/j.clim.2017.07.020
  • Gan, L., Yang, Y., Li, Q., Feng, Y., Liu, T., & Guo, W. (2018). Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomarker Research, 6(1), 10. https://doi.org/10.1186/s40364-018-0122-2
  • Goldring, S. R., & Gravallese, E. M. (1999). Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Research & Therapy, 2(1), 33. https://doi.org/10.1186/ar67
  • Gu, J., Lu, Y., Qiao, L., Ran, D., Li, N., Cao, H., Gao, Y., & Zheng, Q. (2013). Mouse p63 variants and chondrogenesis. International Journal of Clinical and Experimental Pathology, 6(12), 2872–2879.
  • Gubbels Bupp, M. R., & Jorgensen, T. N. (2018). Androgen-induced immunosuppression. Frontiers in Immunology, 9, 794. https://doi.org/10.3389/fimmu.2018.00794
  • Guma, M., Sanchez-Lopez, E., Lodi, A., Garcia-Carbonell, R., Tiziani, S., Karin, M., Lacal, J. C., & Firestein, G. S. (2015). Choline kinase inhibition in rheumatoid arthritis. Annals of the Rheumatic Diseases, 74(7), 1399–1407. https://doi.org/10.1136/annrheumdis-2014-205696
  • Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N. J., & Xu, J. (2018). Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Research, 6, 15. https://doi.org/10.1038/s41413-018-0016-9
  • Ha, H., Bok Kwak, H., Woong Lee, S., Mi Jin, H., Kim, H.-M., Kim, H.-H., & Hee Lee, Z. (2004). Reactive oxygen species mediate RANK signaling in osteoclasts. Experimental Cell Research, 301(2), 119–127. https://doi.org/10.1016/j.yexcr.2004.07.035
  • Hatziapostolou, M., Polytarchou, C., Aggelidou, E., Drakaki, A., Poultsides, G. A., Jaeger, S. A., Ogata, H., Karin, M., Struhl, K., Hadzopoulou-Cladaras, M., & Iliopoulos, D. (2011). An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell, 147(6), 1233–1247. https://doi.org/10.1016/j.cell.2011.10.043
  • Havis, E., & Duprez, D. (2020). EGR1 transcription factor is a multifaceted regulator of matrix production in tendons and other connective tissues. International Journal of Molecular Sciences, 21(5), 1664. https://doi.org/10.3390/ijms21051664
  • He, M., Harms, A. C., van Wijk, E., Wang, M., Berger, R., Koval, S., Hankemeier, T., & van der Greef, J. (2019). Role of amino acids in rheumatoid arthritis studied by metabolomics. International Journal of Rheumatic Diseases, 22(1), 38–46. https://doi.org/10.1111/1756-185X.13062
  • Hernandez, G., Mills, T. S., Rabe, J. L., Chavez, J. S., Kuldanek, S., Kirkpatrick, G., Noetzli, L., Jubair, W. K., Zanche, M., Myers, J. R., Stevens, B. M., Fleenor, C. J., Adane, B., Dinarello, C. A., Ashton, J., Jordan, C. T., Di Paola, J., Hagman, J. R., Holers, V. M., … Pietras, E. M. (2020). Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis. Haematologica, 105(3), 585–597. https://doi.org/10.3324/haematol.2018.197210
  • Holeček, M. (2018). Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutrition & Metabolism, 15(1), 33. https://doi.org/10.1186/s12986-018-0271-1
  • Hua, L., Lin, H., Li, D., Li, L., & Liu, Z. (2012). Mining functional gene modules linked with rheumatoid arthritis using a SNP-SNP network. Genomics, Proteomics & Bioinformatics, 10(1), 23–34. https://doi.org/10.1016/S1672-0229(11)60030-2
  • Huang, L. W., Chang, K. L., Chen, C. J., & Liu, H. W. (2001). Arginase levels are increased in patients with rheumatoid arthritis. Kaohsiung Journal of Medicinal Science, 17(7), 358–363.
  • Jimeno, R., Gomariz, R. P., Garín, M., Gutiérrez-Cañas, I., González-Álvaro, I., Carrión, M., Galindo, M., Leceta, J., & Juarranz, Y. (2015). The pathogenic Th profile of human activated memory Th cells in early rheumatoid arthritis can be modulated by VIP. Journal of Molecular Medicine, 93(4), 457–467. https://doi.org/10.1007/s00109-014-1232-4
  • Jules, J., Li, Y.-P., & Chen, W. (2018). C/EBPα and PU.1 exhibit different responses to RANK signaling for osteoclastogenesis. Bone, 107, 104–114. https://doi.org/10.1016/j.bone.2017.05.009
  • Kang, K., Park, S. H., Chen, J., Qiao, Y., Giannopoulou, E., Berg, K., Hanidu, A., Li, J., Nabozny, G., Kang, K., Park-Min, K.-H., & Ivashkiv, L. B. (2017). Interferon-γ; represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity, 47(2), 235–250. https://doi.org/10.1016/j.immuni.2017.07.017
  • Kany, S., Vollrath, J. T., & Relja, B. (2019). Cytokines in inflammatory disease. International Journal of Molecular Sciences, 20(23), 6008. https://doi.org/10.3390/ijms20236008
  • Karmakar, S., Kay, J., & Gravallese, E. M. (2010). Bone damage in rheumatoid arthritis: mechanistic insights and approaches to prevention. Rheumatic Diseases Clinics of North America, 36(2), 385–404. https://doi.org/10.1016/j.rdc.2010.03.003
  • Karsdal, M. A., Woodworth, T., Henriksen, K., Maksymowych, W. P., Genant, H., Vergnaud, P., Christiansen, C., Schubert, T., Qvist, P., Schett, G., Platt, A., & Bay-Jensen, A.-C. (2011). Biochemical markers of ongoing joint damage in rheumatoid arthritis: Current and future applications, limitations and opportunities. Arthritis Research & Therapy, 13(2), 215. https://doi.org/10.1186/ar3280
  • Kawaguchi, Y., Tochimoto, A., Hara, M., Kawamoto, M., Sugiura, T., Saito, S., & Kamatani, N. (2007). Contribution of single nucleotide polymorphisms of the IL1A gene to the cleavage of precursor IL-1α and its transcription activity. Immunogenetics, 59(6), 441–448. https://doi.org/10.1007/s00251-007-0213-y
  • Kawano, H., Sato, T., Yamada, T., Matsumoto, T., Sekine, K., Watanabe, T., Nakamura, T., Fukuda, T., Yoshimura, K., Yoshizawa, T., Aihara, K., Yamamoto, Y., Nakamichi, Y., Metzger, D., Chambon, P., Nakamura, K., Kawaguchi, H., & Kato, S. (2003). Suppressive function of androgen receptor in bone resorption. Proceedings of the National Academy of Sciences, 100(16), 9416–9421. https://doi.org/10.1073/pnas.1533500100
  • Ketavarapu, S., Ramani G, U., & Modi, P. (2013). A study on the serum adenosine deaminase activity in patients with typhoid Fever and other febrile illnesses. Journal of Clinical and Diagnostic Research: JCDR, 7(4), 613–617. https://doi.org/10.7860/JCDR/2013/4761.2865
  • Kim, H. S., & Chung, D. H. (2012). TLR4-mediated IL-12 production enhances IFN-γ and IL-1β production, which inhibits TGF-β production and promotes antibody-induced joint inflammation. Arthritis Research & Therapy, 14(5), R210. https://doi.org/10.1186/ar4048
  • Kim, S., Hwang, J., Xuan, J., Jung, Y. H., Cha, H.-S., & Kim, K. H. (2014). Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLOS ONE, 9(6), e97501.
  • Klimenta, B., Nefić, H., Prodanović, N., Hukić, F., & Mešić, A. (2020). Haematological parameters in patients with rheumatoid arthritis and gene variants HLA-DRB1 * 04 and HLA-DRB1 * 03. Genetics & Applications, 4(1), 30. https://doi.org/10.31383/Ga.Vol4iss1pp30-37
  • Komine, O., Hayashi, K., Natsume, W., Watanabe, T., Seki, Y., Seki, N., Yagi, R., Sukzuki, W., Tamauchi, H., Hozumi, K., Habu, S., Kubo, M., & Satake, M. (2003). The Runx1 transcription factor inhibits the differentiation of naive CD4+ T Cells into the Th2 lineage by repressing GATA3 expression . Journal of Experimental Medicine, 198(1), 51–61. https://doi.org/10.1084/jem.20021200
  • Lennard Richard, M. L., Sato, S., Suzuki, E., Williams, S., Nowling, T. K., & Zhang, X. K. (2014). The Fli-1 transcription factor regulates the expression of CCL5/RANTES. The Journal of Immunology, 193(6), 2661–2668. https://doi.org/10.4049/jimmunol.1302779
  • Li, J., Che, N., Xu, L., Zhang, Q., Wang, Q., Tan, W., & Zhang, M. (2018). LC-MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clinical Rheumatology, 37(6), 1493–1502. https://doi.org/10.1007/s10067-018-4021-6
  • Li, M., Zhai, L., & Wei, W. (2016). High-methionine diet attenuates severity of arthritis and modulates IGF-I related gene expressions in an adjuvant arthritis rats model. Mediators of Inflammation, 2016, 9280529. https://doi.org/10.1155/2016/9280529
  • Littlewood-Evans, A., Sarret, S., Apfel, V., Loesle, P., Dawson, J., Zhang, J., Muller, A., Tigani, B., Kneuer, R., Patel, S., Valeaux, S., Gommermann, N., Rubic-Schneider, T., Junt, T., & Carballido, J. M. (2016). GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. The Journal of Experimental Medicine, 213(9), 1655–1662. https://doi.org/10.1084/jem.20160061
  • Liu, F., Lee, S.-K., Adams, D. J., Gronowicz, G. A., & Kream, B. E. (2007). CREM deficiency in mice alters the response of bone to intermittent parathyroid hormone treatment. Bone, 40(4), 1135–1143. https://doi.org/10.1016/j.bone.2006.12.003
  • Lorin, J., Zeller, M., Guilland, J.-C., Cottin, Y., Vergely, C., & Rochette, L. (2014). Arginine and nitric oxide synthase: Regulatory mechanisms and cardiovascular aspects. Molecular Nutrition & Food Research, 58(1), 101–116. https://doi.org/10.1002/mnfr.201300033
  • Lotfi, N., Thome, R., Rezaei, N., Zhang, G.-X., Rezaei, A., Rostami, A., & Esmaeil, N. (2019). Roles of GM-CSF in the pathogenesis of autoimmune diseases: An update . In Frontiers in Immunology, 10, 1265. https://doi.org/10.3389/fimmu.2019.01265
  • Luz-Crawford, P., Ipseiz, N., Espinosa-Carrasco, G., Caicedo, A., Tejedor, G., Toupet, K., Loriau, J., Scholtysek, C., Stoll, C., Khoury, M., Noël, D., Jorgensen, C., Krönke, G., & Djouad, F. (2016). PPARβ/δ directs the therapeutic potential of mesenchymal stem cells in arthritis. Annals of the Rheumatic Diseases, 75(12), 2166–2174. https://doi.org/10.1136/annrheumdis-2015-208696
  • Madsen, R. K., Lundstedt, T., Gabrielsson, J., Sennbro, C.-J., Alenius, G.-M., Moritz, T., Rantapää-Dahlqvist, S., & Trygg, J. (2011). Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Research & Therapy, 13(1), R19. https://doi.org/10.1186/ar3243
  • Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., & Ferrari, R. (2018). Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 19(2), 286–302. https://doi.org/10.1093/BIB/BBW114
  • Mateen, S., Moin, S., Shahzad, S., & Khan, A. Q. (2017). Level of inflammatory cytokines in rheumatoid arthritis patients: Correlation with 25-hydroxy vitamin D and reactive oxygen species. PloS One, 12(6), e0178879–e0178879. https://doi.org/10.1371/journal.pone.0178879
  • Mateen, S., Zafar, A., Moin, S., Khan, A. Q., & Zubair, S. (2016). Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clinica Chimica Acta, 455, 161–171. https://doi.org/10.1016/j.cca.2016.02.010
  • McCormack, W. J., Parker, A. E., & O’Neill, L. A. (2009). Toll-like receptors and NOD-like receptors in rheumatic diseases. Arthritis Research & Therapy, 11(5), 243. https://doi.org/10.1186/ar2729
  • McHugh, J. (2020). Arginine restriction attenuates bone loss in arthritis. Nature Reviews Rheumatology, 16(3), 128. https://doi.org/10.1038/s41584-020-0387-3
  • Mertens, M., & Singh, J. A. (2009). Anakinra for rheumatoid arthritis. Cochrane Database of Systematic Reviews, 1. https://doi.org/10.1002/14651858.CD005121.pub3
  • Mohamad, N.-V., Wong, S. K., Wan Hasan, W. N., Jolly, J. J., Nur-Farhana, M. F., Ima-Nirwana, S., & Chin, K.-Y. (2019). The relationship between circulating testosterone and inflammatory cytokines in men. The Aging Male, 22(2), 129–140. https://doi.org/10.1080/13685538.2018.1482487
  • Møller, S. H., Wang, L., & Ho, P.-C. (2021). Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cellular & Molecular Immunology, 19(3), 370–383. https://doi.org/10.1038/s41423-021-00753-1
  • Moon, Y.-M., Yoon, B.-Y., Her, Y.-M., Oh, H.-J., Lee, J.-S., Kim, K.-W., Lee, S.-Y., Woo, Y.-J., Park, K.-S., Park, S.-H., Kim, H.-Y., & Cho, M.-L. (2012). IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis. Arthritis Research & Therapy, 14(6), R246. https://doi.org/10.1186/ar4089
  • Moore, B. A., Aznavoorian, S., Engler, J. A., & Windsor, L. J. (2000). Induction of collagenase-3 (MMP-13) in rheumatoid arthritis synovial fibroblasts. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1502(2), 307–318. https://doi.org/10.1016/S0925-4439(00)00056-9
  • Mousavi, M. J., Karami, J., Aslani, S., Tahmasebi, M. N., Vaziri, A. S., Jamshidi, A., Farhadi, E., & Mahmoudi, M. (2021). Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. Auto- Immunity Highlights, 12(1), 3. https://doi.org/10.1186/s13317-020-00145-x
  • Mun, S., Lee, J., Lim, M.-K., Lee, Y.-R., Ihm, C., Lee, S. H., & Kang, H.-G. (2018). Development of a novel diagnostic biomarker set for rheumatoid arthritis using a proteomics approach. BioMed Research International, 2018, 7490723. https://doi.org/10.1155/2018/7490723
  • Muskardin, T. L. W., & Niewold, T. B. (2018). Type I interferon in rheumatic diseases. Nature Reviews. Rheumatology, 14(4), 214–228. https://doi.org/10.1038/nrrheum.2018.31
  • Naik, A. A., Narayanan, A., Khanchandani, P., Sridharan, D., Sukumar, P., Srimadh Bhagavatam, S. K., Seshagiri, P. B., & Sivaramakrishnan, V. (2020). Systems analysis of avascular necrosis of femoral head using integrative data analysis and literature mining delineates pathways associated with disease. Scientific Reports, 10(1), 18099. https://doi.org/10.1038/s41598-020-75197-0
  • Naik, A. A., & Sivaramakrishnan, V. (2021). Systems analysis of steroid induced osteonecrosis shows role for heme and vitamin D in pathogenesis. Gene Reports, 25, 101383. https://doi.org/10.1016/j.genrep.2021.101383
  • Naik, A. A., & Sivaramakrishnan, V. (2022). Femoral Head Osteonecrosis is associated with thrombosis, fatty acid and cholesterol biosynthesis: A potential role for anti-thrombotics and statins as disease modifying agents. Medical Hypotheses, 161, 110808. https://doi.org/10.1016/j.mehy.2022.110808
  • Nakerakanti, S. S., Bujor, A. M., & Trojanowska, M. (2011). CCN2 is required for the TGF-β induced activation of Smad1-Erk1/2 signaling network. PLOS ONE, 6(7), e21911.
  • Narayanan, A., Khanchandani, P., Borkar, R. M., Ambati, C. R., Roy, A., Han, X., Bhoskar, R. N., Ragampeta, S., Gannon, F., Mysorekar, V., Karanam, B., V, S. M., & Sivaramakrishnan, V. (2017). Avascular necrosis of femoral head: A metabolomic, biophysical, biochemical, electron microscopic and histopathological characterization. Scientific Reports, 7(1), 10721. https://doi.org/10.1038/s41598-017-10817-w
  • Nevius, E., Gomes, A. C., & Pereira, J. P. (2016). Inflammatory cell migration in rheumatoid arthritis: A comprehensive review. Clinical Reviews in Allergy & Immunology, 51(1), 59–78. https://doi.org/10.1007/s12016-015-8520-9
  • Niewold, T. B., Harrison, M. J., & Paget, S. A. (2007). Anti-CCP antibody testing as a diagnostic and prognostic tool in rheumatoid arthritis. QJM: An International Journal of Medicine, 100(4), 193–201. https://doi.org/10.1093/qjmed/hcm015
  • Ogata, A., Kato, Y., Higa, S., & Yoshizaki, K. (2019). IL-6 inhibitor for the treatment of rheumatoid arthritis: A comprehensive review. Modern Rheumatology, 29(2), 258–267. https://doi.org/10.1080/14397595.2018.1546357
  • Ohl, K., Nickel, H., Moncrieffe, H., Klemm, P., Scheufen, A., Föll, D., Wixler, V., Schippers, A., Wagner, N., Wedderburn, L. R., & Tenbrock, K. (2018). The transcription factor CREM drives an inflammatory phenotype of T cells in oligoarticular juvenile idiopathic arthritis. Pediatric Rheumatology, 16(1), 39. https://doi.org/10.1186/s12969-018-0253-x
  • Okamoto, H., & Kobayashi, A. (2011). Tyrosine kinases in rheumatoid arthritis. Journal of Inflammation, 8(1), 21. https://doi.org/10.1186/1476-9255-8-21
  • Oscanoa, J., Sivapalan, L., Gadaleta, E., Dayem Ullah, A. Z., Lemoine, N. R., & Chelala, C. (2020). SNPnexus: A web server for functional annotation of human genome sequence variation (2020 update). Nucleic Acids Research, 48(W1), W185–W192. https://doi.org/10.1093/nar/gkaa420
  • Osiri, M., Wongpiyabovorn, J., Sattayasomboon, Y., & Thammacharoenrach, N. (2016). Inflammatory cytokine levels, disease activity, and function of patients with rheumatoid arthritis treated with combined conventional disease-modifying antirheumatic drugs or biologics. Clinical Rheumatology, 35(7), 1673–1681. https://doi.org/10.1007/s10067-016-3306-x
  • Owen, S. A., Hider, S. L., Martin, P., Bruce, I. N., Barton, A., & Thomson, W. (2013). Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. The Pharmacogenomics Journal, 13(3), 227–234. https://doi.org/10.1038/tpj.2012.7
  • Ozaki, M., Kawabe, Y., Nakamura, H., Migita, K., Kawakami, A., Tsukazaki, K., & Eguchi, K. (2001). Elevated serum cytokine levels in a rheumatoid arthritis patient with large granular lymphocyte syndrome. Rheumatology, 40(5), 592–593. https://doi.org/10.1093/rheumatology/40.5.592
  • Panfili, E., Gerli, R., Grohmann, U., & Pallotta, M. T. (2020). Amino acid metabolism in rheumatoid arthritis: Friend or foe? Biomolecules, 10, 9, 1280. https://doi.org/10.3390/biom10091280
  • Parisi, D., Adasme, M. F., Sveshnikova, A., Bolz, S. N., Moreau, Y., & Schroeder, M. (2020). Drug repositioning or target repositioning: A structural perspective of drug-target-indication relationship for available repurposed drugs. Computational and Structural Biotechnology Journal, 18, 1043–1055. https://doi.org/10.1016/j.csbj.2020.04.004
  • Pawlik, A., Kotrych, D., Malinowski, D., Dziedziejko, V., Czerewaty, M., & Safranow, K. (2016). IL17A and IL17F gene polymorphisms in patients with rheumatoid arthritis. BMC Musculoskeletal Disorders, 17(1), 208. https://doi.org/10.1186/s12891-016-1064-1
  • Peeters, J. G. C., Vervoort, S. J., Tan, S. C., Mijnheer, G., de Roock, S., Vastert, S. J., Nieuwenhuis, E. E. S., van Wijk, F., Prakken, B. J., Creyghton, M. P., Coffer, P. J., Mokry, M., & van Loosdregt, J. (2015). Inhibition of super-enhancer activity in autoinflammatory site-derived T cells reduces disease-associated gene expression. Cell Reports, 12(12), 1986–1996. https://doi.org/10.1016/j.celrep.2015.08.046
  • Perl, A., Hanczko, R., Telarico, T., Oaks, Z., & Landas, S. (2011). Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends in Molecular Medicine, 17(7), 395–403. https://doi.org/10.1016/j.molmed.2011.01.014
  • Price, D. K., Chau, C. H., Till, C., Goodman, P. J., Baum, C. E., Ockers, S. B., English, B. C., Minasian, L., Parnes, H. L., Hsing, A. W., Reichardt, J. K. V, Hoque, A., Tangen, C. M., Kristal, A. R., Thompson, I. M., & Figg, W. D. (2010). Androgen receptor CAG repeat length and association with prostate cancer risk: results from the prostate cancer prevention trial. The Journal of Urology, 184(6), 2297–2302. https://doi.org/10.1016/j.juro.2010.08.005
  • Pucino, V., Certo, M., Bulusu, V., Cucchi, D., Goldmann, K., Pontarini, E., Haas, R., Smith, J., Headland, S. E., Blighe, K., Ruscica, M., Humby, F., Lewis, M. J., Kamphorst, J. J., Bombardieri, M., Pitzalis, C., & Mauro, C. (2019). Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metabolism, 30(6), 1055–1074.e8. https://doi.org/10.1016/j.cmet.2019.10.004
  • Pulukool, S. K., Bhagavatham, S. K. S., Kannan, V., Sukumar, P., Dandamudi, R. B., Ghaisas, S., Kunchala, H., Saieesh, D., Naik, A. A., Pargaonkar, A., Sharma, A., & Sivaramakrishnan, V. (2021). Elevated dimethylarginine, ATP, cytokines, metabolic remodeling involving tryptophan metabolism and potential microglial inflammation characterize primary open angle glaucoma. Scientific Reports, 11(1), 9766. https://doi.org/10.1038/s41598-021-89137-z
  • Pulukool, S. K., Srimadh Bhagavatham, S. K., Kannan, V., Parim, B., Challa, S., Karnatam, V., Datta Darshan, V.M, Ahmad Mir, I., Sukumar, P., Venkateshan, V., Sharma, A., & Sivaramakrishnan, V. (2022). Elevated ATP, cytokines and potential microglial inflammation distinguish exfoliation glaucoma from exfoliation syndrome. Cytokine, 151, 155807. https://doi.org/10.1016/j.cyto.2022.155807
  • Ratneswaran, A., Sun, M. M.-G., Dupuis, H., Sawyez, C., Borradaile, N., & Beier, F. (2017). Nuclear receptors regulate lipid metabolism and oxidative stress markers in chondrocytes. Journal of Molecular Medicine (Berlin, Germany), 95(4), 431–444. https://doi.org/10.1007/s00109-016-1501-5
  • Rodríguez-Carrio, J., Alperi-López, M., López, P., Ballina-García, F. J., & Suárez, A. (2018). Heterogeneity of the type I interferon signature in rheumatoid arthritis: A potential limitation for its use as a clinical biomarker. Frontiers in Immunology, 8, 2007. https://doi.org/10.3389/fimmu.2017.02007
  • Rodriguez-García, S. C., Montes, N., Ivorra-Cortes, J., Triguero-Martinez, A., Rodriguez-Rodriguez, L., Castrejón, I., Carmona, L., & González-Álvaro, I. (2021). Disease activity indices in rheumatoid arthritis: Comparative performance to detect changes in function, IL-6 levels, and radiographic progression. Frontiers in Medicine, 8, 745. https://doi.org/10.3389/fmed.2021.669688
  • Rodríguez-Prados, J.-C., Través, P. G., Cuenca, J., Rico, D., Aragonés, J., Martín-Sanz, P., Cascante, M., & Boscá, L. (2010). Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. The Journal of Immunology, 185(1), 605–614. https://doi.org/10.4049/jimmunol.0901698
  • Romano, R. A., Solomon, L. W., & Sinha, S. (2011). Tp63 in oral development, neoplasia, and autoimmunity. Journal of Dental Research, 91(2), 125–132. https://doi.org/10.1177/0022034511411302
  • Roy, D. G., Chen, J., Mamane, V., Ma, E. H., Muhire, B. M., Sheldon, R. D., Shorstova, T., Koning, R., Johnson, R. M., Esaulova, E., Williams, K. S., Hayes, S., Steadman, M., Samborska, B., Swain, A., Daigneault, A., Chubukov, V., Roddy, T. P., Foulkes, W., … Jones, R. G. (2020). Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metabolism, 31(2), 250–266.e9. https://doi.org/10.1016/j.cmet.2020.01.006
  • Russell, P. K., Clarke, M. V, Skinner, J. P., Pang, T. P. S., Zajac, J. D., & Davey, R. A. (n.d.). Identification of gene pathways altered by deletion of the androgen receptor specifically in mineralizing osteoblasts and osteocytes in mice. Journal of Molecular Endocrinology, 49(1), 1–10. https://doi.org/10.1530/JME-12-0014
  • Saad, M. N., Mabrouk, M. S., Eldeib, A. M., & Shaker, O. G. (2016). Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis. Journal of Advanced Research, 7(1), 1–16. https://doi.org/10.1016/j.jare.2015.01.008
  • Saha, R., Pradhan, S. S., Shalimar, Das, P., Mishra, P., Singh, R., Sivaramakrishnan, V., & Acharya, P. (2021). Inflammatory signature in acute-on-chronic liver failure includes increased expression of granulocyte genes ELANE, MPO and CD177. Scientific Reports, 11(1), 18849. https://doi.org/10.1038/s41598-021-98086-6
  • Sai Swaroop, R., Akhil, P. S., Sai Sanwid, P., Bandana, P., Raksha, R. K., Meghana, M., Bibha, C., & Sivaramakrishnan, V. (2022). Integrated multi-omic data analysis and validation with yeast model show oxidative phosphorylation modulates protein aggregation in amyotrophic lateral sclerosis. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2022.2090441
  • Sato, S., Lennard Richard, M., Brandon, D., Jones Buie, J. N., Oates, J. C., Gilkeson, G. S., & Zhang, X. K. (2014). A critical role of the transcription factor Fli-1 in murine lupus development by regulation of interleukin-6 expression. Arthritis & Rheumatology, 66(12), 3436–3444. https://doi.org/10.1002/art.38818
  • Schoels, M., Bombardier, C., & Aletaha, D. (2011). Diagnostic and prognostic value of antibodies and soluble biomarkers in undifferentiated peripheral inflammatory arthritis: A systematic review. The Journal of Rheumatology, 87, 20–25. https://doi.org/10.3899/jrheum.101070
  • Scholtysek, C., Katzenbeisser, J., Fu, H., Uderhardt, S., Ipseiz, N., Stoll, C., Zaiss, M. M., Stock, M., Donhauser, L., Böhm, C., Kleyer, A., Hess, A., Engelke, K., David, J.-P., Djouad, F., Tuckermann, J. P., Desvergne, B., Schett, G., & Krönke, G. (2013). PPARβ/δ governs Wnt signaling and bone turnover. Nature Medicine, 19(5), 608–613. https://doi.org/10.1038/nm.3146
  • Scott, D. L., Wolfe, F., & Huizinga, T. W. J. (2010). Rheumatoid arthritis. The Lancet, 376(9746), 1094–1108. https://doi.org/10.1016/S0140-6736(10)60826-4
  • Sellam, J., Marion-Thore, S., Dumont, F., Jacques, S., Garchon, H.-J., Rouanet, S., Taoufik, Y., Hendel-Chavez, H., Sibilia, J., Tebib, J., Le Loët, X., Combe, B., Dougados, M., Mariette, X., & Chiocchia, G. (2014). Use of whole-blood transcriptomic profiling to highlight several pathophysiologic pathways associated with response to rituximab in patients with rheumatoid arthritis: data from a randomized, controlled, open-label trial. Arthritis & Rheumatology, 66(8), 2015–2025. https://doi.org/10.1002/art.38671
  • Shao, P., Ma, L., Ren, Y., & Liu, H. (2017). Modulation of the immune response in rheumatoid arthritis with strategically released rapamycin. Molecular Medicine Reports, 16(4), 5257–5262. https://doi.org/10.3892/mmr.2017.7285
  • Shuai-Kun, S., Chun-Yuan, L., Pin-Ji, L., Wang, X., Zhao, Y. Z., Cai, Y., Wang, Z., Li, L., & Min, W. (2016). The EZH1–SUZ12 complex positively regulates the transcription of NF-κB target genes through interaction with UXT. Journal of Cell Science, 129, 2343–2353. https://doi.org/10.1242/jcs.185546
  • Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(Web Server), W452–W457. https://doi.org/10.1093/nar/gks539
  • Smolen, J. S., Aletaha, D., Barton, A., Burmester, G. R., Emery, P., Firestein, G. S., Kavanaugh, A., McInnes, I. B., Solomon, D. H., Strand, V., & Yamamoto, K. (2018). Rheumatoid arthritis. Nature Reviews Disease Primers, 4, 1–23. https://doi.org/10.1038/nrdp.2018.1
  • Srimadh Bhagavatham, S. K., Potikuri, D., & Sivaramakrishnan, V. (2022). Adenosine deaminase and cytokines associated with infectious diseases as risk factors for inflammatory arthritis and methotrexate as a potential prophylactic agent. Medical Hypotheses, 159, 110751. https://doi.org/10.1016/j.mehy.2021.110751
  • Sugatani, T., & Hruska, K. A. (2005). Akt1/Akt2 and mammalian target of rapamycin/bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors*. Journal of Biological Chemistry, 280(5), 3583–3589. https://doi.org/10.1074/jbc.M410480200
  • Takahashi, S., Saegusa, J., Sendo, S., Okano, T., Akashi, K., Irino, Y., & Morinobu, A. (2017). Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Research & Therapy, 19(1), 76. https://doi.org/10.1186/s13075-017-1283-3
  • Tan, N. S., Michalik, L., Noy, N., Yasmin, R., Pacot, C., Heim, M., Flühmann, B., Desvergne, B., & Wahli, W. (2001). Critical roles of PPARβ/δ in keratinocyte response to inflammation. Genes & Development, 15(24), 3263–3277. https://doi.org/10.1101/gad.207501
  • Taniguchi, Y., Kawata, M., Ho Chang, S., Mori, D., Okada, K., Kobayashi, H., Sugita, S., Hosaka, Y., Inui, H., Taketomi, S., Yano, F., Ikeda, T., Akiyama, H., Mills, A. A., Chung, U., Tanaka, S., Kawaguchi, H., & Saito, T. (2017). Regulation of chondrocyte survival in mouse articular cartilage by p63. Arthritis & Rheumatology, 69(3), 598–609. https://doi.org/10.1002/art.39976
  • Tasaki, S., Suzuki, K., Kassai, Y., Takeshita, M., Murota, A., Kondo, Y., Ando, T., Nakayama, Y., Okuzono, Y., Takiguchi, M., Kurisu, R., Miyazaki, T., Yoshimoto, K., Yasuoka, H., Yamaoka, K., Morita, R., Yoshimura, A., Toyoshiba, H., & Takeuchi, T. (2018). Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nature Communications, 9(1), 2755. https://doi.org/10.1038/s41467-018-05044-4
  • Tavasolian, F., Hosseini, A. Z., Soudi, S., Naderi, M., & Sahebkar, A. (2021). A systems biology approach for miRNA-mRNA expression patterns analysis in rheumatoid arthritis. Combinatorial Chemistry & High Throughput Screening, 24(2), 195–212.
  • Teixeira, V. H., Olaso, R., Martin-Magniette, M.-L., Lasbleiz, S., Jacq, L., Oliveira, C. R., Hilliquin, P., Gut, I., Cornelis, F., & Petit-Teixeira, E. (2009). Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. PLOS ONE, 4(8), e6803.
  • Tokuhiro, S., Yamada, R., Chang, X., Suzuki, A., Kochi, Y., Sawada, T., Suzuki, M., Nagasaki, M., Ohtsuki, M., Ono, M., Furukawa, H., Nagashima, M., Yoshino, S., Mabuchi, A., Sekine, A., Saito, S., Takahashi, A., Tsunoda, T., Nakamura, Y., & Yamamoto, K. (2003). An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nature Genetics, 35(4), 341–348. https://doi.org/10.1038/ng1267
  • Trenkmann, M., Brock, M., Gay, R. E., Kolling, C., Speich, R., Michel, B. A., Gay, S., & Huber, L. C. (2011). Expression and function of EZH2 in synovial fibroblasts: epigenetic repression of the Wnt inhibitor SFRP1 in rheumatoid arthritis. Annals of the Rheumatic Diseases, 70(8), 148–1488. https://doi.org/10.1136/ard.2010.143040
  • Tsai, P.-H., Chien, Y., Chuang, J.-H., Chou, S.-J., Chien, C.-H., Lai, Y.-H., Li, H.-Y., Ko, Y.-L., Chang, Y.-L., Wang, C.-Y., Liu, Y.-Y., Lee, H.-C., Yang, C.-H., Tsai, T.-F., Lee, Y.-Y., & Chiou, S.-H. (2015). Dysregulation of mitochondrial functions and osteogenic differentiation in Cisd2-deficient murine induced pluripotent stem cells. Stem Cells and Development, 24(21), 2561–2576. https://doi.org/10.1089/scd.2015.0066
  • Tsuchiya, H., Ota, M., Sumitomo, S., Ishigaki, K., Suzuki, A., Sakata, T., Tsuchida, Y., Inui, H., Hirose, J., Kochi, Y., Kadono, Y., Shirahige, K., Tanaka, S., Yamamoto, K., & Fujio, K. (2020). Parsing multiomics landscape of activated synovial fibroblasts highlights drug targets linked to genetic risk of rheumatoid arthritis. BioRxiv, 861781. https://doi.org/10.1101/861781
  • Van Beek, J. P., Kennedy, L., Rockel, J. S., Bernier, S. M., & Leask, A. (2006). The induction of CCN2 by TGFbeta1 involves Ets-1. Arthritis Research & Therapy, 8(2), R36–R36. https://doi.org/10.1186/ar1890
  • van Wietmarschen, H. A., Dai, W., van der Kooij, A. J., Reijmers, T. H., Schroën, Y., Wang, M., Xu, Z., Wang, X., Kong, H., Xu, G., Hankemeier, T., Meulman, J. J., & van der Greef, J. (2012). Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements. PLOS ONE, 7(9), e44331.
  • van Wietmarschen, H., Yuan, K., Lu, C., Gao, P., Wang, J., Xiao, C., Yan, X., Wang, M., Schroën, J., Lu, A., Xu, G., & van der Greef, J. (2009). Systems biology guided by Chinese medicine reveals new markers for sub-typing rheumatoid arthritis patients. JCR: Journal of Clinical Rheumatology, 15(7). https://doi.org/10.1097/RHU.0b013e3181ba3926
  • Vasanthi, P., Nalini, G., & Rajasekhar, G. (2007). Role of tumor necrosis factor-alpha in rheumatoid arthritis: a review. APLAR Journal of Rheumatology, 10(4), 270–274. https://doi.org/10.1111/j.1479-8077.2007.00305.x
  • Vasko, R., Blaschke, S., Jan-Hendrik, S., Muller, G. A., Korsten, P., & Dilhazi, H. (2016). Comparative serum proteomic analysis of differentially regulated proteins in patients with rheumatoid arthritis and healthy volunteers. Journal of Arthritis, 5(3), 1–4. https://doi.org/10.4172/2167-7921.1000201
  • Vijayan, V., Khandelwal, M., Manglani, K., Gupta, S., & Surolia, A. (2014). Methionine down-regulates TLR4/MyD88/NF-κB signalling in osteoclast precursors to reduce bone loss during osteoporosis. British Journal of Pharmacology, 171(1), 107–121. https://doi.org/10.1111/bph.12434
  • Wagner, N., & Wagner, K.-D. (2020). PPARs and angiogenesis—Implications in pathology. In International Journal of Molecular Sciences, 21, 16, 5723. https://doi.org/10.3390/ijms21165723
  • Wang, B., Suen, C. W., Ma, H., Wang, Y., Kong, L., Qin, D., Lee, Y. W. W., & Li, G. (2020). The roles of H19 in regulating inflammation and aging. Frontiers in Immunology, 11, 2769. https://doi.org/10.3389/fimmu.2020.579687
  • Wang, J., Duncan, D., Shi, Z., & Zhang, B. (2013). WEB-based GEne SeT analysis Toolkit (WebGestalt): Update 2013. Nucleic Acids Research, 41(W1), W77–W83. https://doi.org/10.1093/nar/gkt439
  • Wang, S., Tian, S., Li, M., & Li, Z. (2018). Methionine attenuates the intensity of rheumatoid arthritis by downregulating NF-κB and iNOS expression in neonatal rats. Biotech, 8(7), 303. https://doi.org/10.1007/s13205-018-1311-2
  • Wang, Y., Nakajima, T., Gonzalez, F. J., & Tanakam, N. (2020). PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21062061
  • Wasserman, A. M. (2011). Diagnosis and management of rheumatoid arthritis. American Family Physician, 84(11), 1245–1252.
  • Whitaker, J. W., Boyle, D. L., Bartok, B., Ball, S. T., Gay, S., Wang, W., & Firestein, G. S. (2015). Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets. PloS One, 10(4), e0124254–e0124254. https://doi.org/10.1371/journal.pone.0124254
  • Wilfahrt, D. N., Hsu, F.-C., McCue, S., Rajcula, M., & Shapiro, V. S. (2019). Runx1 is a key regulator of T cell anergy. The Journal of Immunology, 202(1 Supplement), 56.15–56.15.
  • Williams, N. C., & O’Neill, L. A. J. (2018). A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Frontiers in Immunology, 9, 141. https://doi.org/10.3389/fimmu.2018.00141
  • Wu, W.-J., Jia, W.-W., Liu, X.-H., Pan, L.-L., Zhang, Q.-Y., Yang, D., Shen, X.-Y., Liu, L., & Zhu, Y. Z. (2016). S-propargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biology, 10, 157–167. https://doi.org/10.1016/j.redox.2016.08.011
  • Xing, R., Zhang, Y., Li, C., Sun, L., Yang, L., Zhao, J., & Liu, X. (2016). Interleukin-21 promotes osteoclastogenesis in RAW264.7 cells through the PI3K/AKT signaling pathway independently of RANKL. Int J Mol Med, 38(4), 1125–1134. https://doi.org/10.3892/ijmm.2016.2722
  • Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De Nardo, D., Gohel, T. D., Emde, M., Schmidleithner, L., Ganesan, H., Nino-Castro, A., Mallmann, M. R., Labzin, L., Theis, H., Kraut, M., Beyer, M., Latz, E., Freeman, T. C., … Schultze, J. L. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 40(2), 274–288. https://doi.org/10.1016/j.immuni.2014.01.006
  • Yang, M., & Kream, B. E. (2008). Calcitonin induces expression of the inducible cAMP early repressor in osteoclasts. Endocrine, 33(3), 245–253. https://doi.org/10.1007/s12020-008-9092-8
  • Yano, F., Ohba, S., Murahashi, Y., Tanaka, S., Saito, T., & Chung, U. (2019). Runx1 contributes to articular cartilage maintenance by enhancement of cartilage matrix production and suppression of hypertrophic differentiation. Scientific Reports, 9(1), 7666. https://doi.org/10.1038/s41598-019-43948-3
  • Yap, H.-Y., Tee, S. Z.-Y., Wong, M. M.-T., Chow, S.-K., Peh, S.-C., & Teow, S.-Y. (2018). Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells, 7(10), 161. https://doi.org/10.3390/cells7100161
  • Yarilina, A., Park-Min, K.-H., Antoniv, T., Hu, X., & Ivashkiv, L. B. (2008). TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon–response genes. Nature Immunology, 9(4), 378–387. https://doi.org/10.1038/ni1576
  • Yoshida, N., Comte, D., Mizui, M., Otomo, K., Rosetti, F., Mayadas, T. N., Crispín, J. C., Bradley, S. J., Koga, T., Kono, M., Karampetsou, M. P., Kyttaris, V. C., Tenbrock, K., & Tsokos, G. C. (2016). ICER is requisite for Th17 differentiation. Nature Communications, 7(1), 12993. https://doi.org/10.1038/ncomms12993
  • Yusti, G., Fielli, M., Gonzalez, A., Torales, G., Zapata, A., & Ceccato, A. (2018). Usefulness of adenosine deaminase assay in diagnosis of patients with HIV infection and pleural tuberculosis. Medical Sciences (Basel, Switzerland), 6(4), 101. https://doi.org/10.3390/medsci6040101
  • Zhang, M., Lee, S., Yao, B., Xiao, G., Xu, L., & Xie, Y. (2019). DIGREM: An integrated web-based platform for detecting effective multi-drug combinations. Bioinformatics (Oxford, England), 35(10), 1792–1794. https://doi.org/10.1093/bioinformatics/bty860
  • Zhang, R., Luan, M., Shang, Z., Duan, L., Tang, G., Shi, M., Lv, W., Zhu, H., Li, J., Lv, H., Zhang, M., Liu, G., Chen, H., & Jiang, Y. (2014). RADB: A database of rheumatoid arthritis-related polymorphisms. Database, 2014, bau090. https://doi.org/10.1093/database/bau090
  • Zhang, W., Sun, G., Likhodii, S., Liu, M., Aref-Eshghi, E., Harper, P. E., Martin, G., Furey, A., Green, R., & Randell, E. (2016). Metabolomic analysis of human plasma reveals that arginine is depleted in knee osteoarthritis patients. Osteoarthritis and Cartilage, 24(5), 827–834.
  • Zhou, J., Chen, J., Hu, C., Xie, Z., Li, H., Wei, S., Wang, D., Wen, C., & Xu, G. (2016). Exploration of the serum metabolite signature in patients with rheumatoid arthritis using gas chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 127, 60–67. https://doi.org/10.1016/j.jpba.2016.02.004
  • Zhou, Y., Li, S., Chen, P., Yang, B., Yang, J., Liu, R., Li, J., & Xia, D. (2019). MicroRNA-27b-3p inhibits apoptosis of chondrocyte in rheumatoid arthritis by targeting HIPK2. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1766–1771. https://doi.org/10.1080/21691401.2019.1607362

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.