206
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Computational investigation of peptidomimetics as potential inhibitors of SARS-CoV-2 spike protein

& ORCID Icon
Pages 7144-7157 | Received 01 Jun 2022, Accepted 18 Aug 2022, Published online: 29 Aug 2022

References

  • Baden, L. R. (2020). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine, 384(5), 403–416.
  • Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Thiel, K., & Wiswedel, B. (2009). KNIME-the Konstanz information miner: Version 2.0 and beyond. ACM SIGKDD Explorations Newsletter, 11(1), 26–31. https://doi.org/10.1145/1656274.1656280
  • Campbell, F., Archer, B., Laurenson-Schafer, H., Jinnai, Y., Konings, F., Batra, N., Pavlin, B., Vandemaele, K., Van Kerkhove, M. D., Jombart, T., Morgan, O., & le Polain de Waroux, O. (2021). Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance, 26(24), 2100509. https://doi.org/10.2807/1560-7917.ES.2021.26.24.2100509
  • Case, D. A. (2008). Amber 10. San Francisco: University of California.
  • Case, D. A. (2021). Amber. University of California.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Colmenares-Mejía, C. C., Serrano-Díaz, N., Quintero-Lesmes, D. C., Meneses, L., Salazar Acosta, I., Idrovo, Á. J., Sanabria-Echeverry, D. Y., Cordero-Rebolledo, H., & Castillo, V. (2021). Seroprevalence of SARS-CoV-2 infection among occupational groups from the Bucaramanga metropolitan area, Colombia. International Journal of Environmental Research and Public Health, 18(8), 4172. https://doi.org/10.3390/ijerph18084172
  • Cowell, S. M., Lee, Y. S., Cain, J. P., & Hruby, V. J. (2004). Exploring Ramachandran and chi space: Conformationally constrained amino acids and peptides in the design of bioactive polypeptide ligands. Current Medicinal Chemistry, 11(21), 2785–2798. https://doi.org/10.2174/0929867043364270
  • Cui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews. Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
  • Dale, J. W., Hollingworth, G. J., & McKenna, J. M. (2011). Developments and advances in gastrointestinal prokinetic agents. In Annual reports in medicinal chemistry (Vol. 46, pp. 135–154). Elsevier.
  • Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., & Overington, J. P. (2015). ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Research, 43(W1), W612–W620. https://doi.org/10.1093/nar/gkv352
  • Dejnirattisai, W., Huo, J., Zhou, D., Zahradník, J., Supasa, P., Liu, C., Duyvesteyn, H. M., Ginn, H. M., Mentzer, A. J., Tuekprakhon, A., Nutalai, R., Wang, B., Dijokaite, A., Khan, S., Avinoam, O., Bahar, M., Skelly, D., Adele, S., Johnson, S. A., … Young, P. (2022). SARS-CoV-2 Omicron-B. 1.1. 529 leads to widespread escape from neutralizing antibody responses. Cell, 185(3), 467–484.e15. https://doi.org/10.1016/j.cell.2021.12.046
  • Du, X. (2022). Omicron adopts a different strategy from Delta and other variants to adapt to host. Transduction and Targeted Therapy, 7(1), 1–3.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A., & Stahl, M. T. (2010). Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. Journal of Chemical Information and Modeling, 50(4), 572–584. https://doi.org/10.1021/ci100031x
  • He, M., Wang, Y., Huang, S., Zhao, N., Cheng, M., & Zhang, X. (2021). Computational exploration of natural peptides targeting ACE2. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1905555
  • Hoffmann, M., Arora, P., Groß, R., Seidel, A., Hörnich, B. F., Hahn, A. S., Krüger, N., Graichen, L., Hofmann-Winkler, H., Kempf, A., Winkler, M. S., Schulz, S., Jäck, H.-M., Jahrsdörfer, B., Schrezenmeier, H., Müller, M., Kleger, A., Münch, J., & Pöhlmann, S. (2021). SARS-CoV-2 variants B. 1.351 and P. 1 escape from neutralizing antibodies. Cell, 184(9), 2384–2393. https://doi.org/10.1016/j.cell.2021.03.036
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kelley, B. P., Brown, S. P., Warren, G. L., & Muchmore, S. W. (2015). POSIT: Flexible shape-guided docking for pose prediction. Journal of Chemical Information and Modeling, 55(8), 1771–1780. https://doi.org/10.1021/acs.jcim.5b00142
  • Kim, J., Jeong, S., Sarawut, S., Kim, H., Son, S. U., Lee, S., Rabbani, G., Kwon, H., Lim, E.-K., Ahn, S. N., & Park, S.-H. K. (2022). An immunosensor based on a high performance dual-gate oxide semiconductor thin-film transistor for rapid detection of SARS-CoV-2. Lab on a Chip, 22(5), 899–907. https://doi.org/10.1039/d1lc01116b
  • Knipe, D. M. (2013). Fields virology. Lippincott Williams & Wilkins.
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Li, F. (2015). Receptor recognition mechanisms of coronaviruses: A decade of structural studies. Journal of Virology, 89(4), 1954–1964. https://doi.org/10.1128/JVI.02615-14
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  • Li, W., Chen, Y., Prévost, J., Ullah, I., Lu, M., Gong, S. Y., Tauzin, A., Gasser, R., Vézina, D., Anand, S. P., Goyette, G., Chaterjee, D., Ding, S., Tolbert, W. D., Grunst, M. W., Bo, Y., Zhang, S., Richard, J., Zhou, F., … Mothes, W. (2022). Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep, 38(2), 110210. https://doi.org/10.1016/j.celrep.2021.110210
  • Liu, C., Ginn, H. M., Dejnirattisai, W., Supasa, P., Wang, B., Tuekprakhon, A., Nutalai, R., Zhou, D., Mentzer, A. J., Zhao, Y., Duyvesteyn, H. M., López-Camacho, C., Slon-Campos, J., Walter, T. S., Skelly, D., Johnson, S. A., Ritter, T. G., Mason, C., Costa Clemens, S. A., … Screaton, G. R. (2021). Reduced neutralization of SARS-CoV-2 B. 1.617 by vaccine and convalescent serum. Cell, 184(16), 4220–4236. https://doi.org/10.1016/j.cell.2021.06.020
  • Lu, G., Wang, Q., & Gao, G. F. (2015). Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology, 23(8), 468–478. https://doi.org/10.1016/j.tim.2015.06.003
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • McGann, M. (2011). FRED pose prediction and virtual screening accuracy. Journal of Chemical Information and Modeling, 51(3), 578–596. https://doi.org/10.1021/ci100436p
  • McGann, M. (2012). FRED and HYBRID docking performance on standardized datasets. Journal of Computer-Aided Molecular Design, 26(8), 897–906. https://doi.org/10.1007/s10822-012-9584-8
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA. py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Molchanova, N., Hansen, P. R., & Franzyk, H. (2017). Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules, 22(9), 1430. https://doi.org/10.3390/molecules22091430
  • Narkhede, R. R., Cheke, R. S., Ambhore, J. P., & Shinde, S. D. (2020). The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology, 4(3), 185–195.
  • Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., & Ray, S. (2021). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. Journal of Biomolecular Structure & Dynamics, 39(16), 6306–6316. https://doi.org/10.1080/07391102.2020.1796811
  • Patrick, G. L. (Ed.). (2020). Plasmepsins as targets for antimalarial agents. In Antimalarial agents (pp. 217–270). Elsevier.
  • Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., … Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577
  • Quimque, M. T. J., Notarte, K. I. R., Fernandez, R. A. T., Mendoza, M. A. O., Liman, R. A. D., Lim, J. A. K., Pilapil, L. A. E., Ong, J. K. H., Pastrana, A. M., Khan, A., Wei, D.-Q., & Macabeo, A. P. G. (2021). Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. Journal of Biomolecular Structure & Dynamics, 39(12), 4316–4333. https://doi.org/10.1080/07391102.2020.1776639
  • Rabbani, G., & Ahn, S. N. (2021). Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. International Journal of Biological Macromolecules, 193(Pt A), 948–955. https://doi.org/10.1016/j.ijbiomac.2021.10.095
  • Rabbani, G., Ahn, S. N., Kwon, H., Ahmad, K., & Choi, I. (2021). Penta-peptide ATN-161 based neutralization mechanism of SARS-CoV-2 spike protein. Biochemistry and Biophysics Reports, 28, 101170.
  • Sachdeva, S., Joo, H., Tsai, J., Jasti, B., & Li, X. (2019). A rational approach for creating peptides mimicking antibody binding. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-37201-6
  • Sharma, A., Tiwari, V., & Sowdhamini, R. (2020). Computational search for potential COVID-19 drugs from FDA-approved drugs and small molecules of natural origin identifies several anti-virals and plant products. Journal of Biosciences, 45(1), 1–18. https://doi.org/10.1007/s12038-020-00069-8
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics (Oxford, England), 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150
  • Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology, 24(6), 490–502. https://doi.org/10.1016/j.tim.2016.03.003
  • Vagner, J., Qu, H., & Hruby, V. J. (2008). Peptidomimetics, a synthetic tool of drug discovery. Current Opinion in Chemical Biology, 12(3), 292–296. https://doi.org/10.1016/j.cbpa.2008.03.009
  • Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J. C., Cieplak, P., & Dupradeau, F.-Y. (2011). RED Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research, 39(Web Server issue), W511–W517. https://doi.org/10.1093/nar/gkr288
  • Voysey, M., Clemens, S. A. C., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., Angus, B., Baillie, V. L., Barnabas, S. L., Bhorat, Q. E., Bibi, S., Briner, C., Cicconi, P., Collins, A. M., Colin-Jones, R., Cutland, C. L., Darton, T. C., Dheda, K., Duncan, C. J. A., … Zuidewind, P. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet, 397(10269), 99–111. https://doi.org/10.1016/S0140-6736(20)32661-1
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001). Antechamber: An accessory software package for molecular mechanical calculations. Journal of the American Chemical Society, 222, U403.
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wu, Y. (2020). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science (1979), 368(6496), 1274–1278.
  • Zamzami, M. A., Rabbani, G., Ahmad, A., Basalah, A. A., Al-Sabban, W. H., Nate Ahn, S., & Choudhry, H. (2022). Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry, 143, 107982. https://doi.org/10.1016/j.bioelechem.2021.107982
  • Zhou, D., Dejnirattisai, W., Supasa, P., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H. M., Tuekprakhon, A., Nutalai, R., Wang, B., Paesen, G. C., Lopez-Camacho, C., Slon-Campos, J., Hallis, B., Coombes, N., Bewley, K., Charlton, S., Walter, T. S., … Screaton, G. R. (2021). Evidence of escape of SARS-CoV-2 variant B. 1.351 from natural and vaccine-induced sera. Cell, 184(9), 2348–2361. https://doi.org/10.1016/j.cell.2021.02.037
  • Zhou, D., Duyvesteyn, H. M. E., Chen, C.-P., Huang, C.-G., Chen, T.-H., Shih, S.-R., Lin, Y.-C., Cheng, C.-Y., Cheng, S.-H., Huang, Y.-C., Lin, T.-Y., Ma, C., Huo, J., Carrique, L., Malinauskas, T., Ruza, R. R., Shah, P. N. M., Tan, T. K., Rijal, P., … Huang, K.-Y. A. (2020). Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nature Structural & Molecular Biology, 27(10), 950–958. https://doi.org/10.1038/s41594-020-0480-y
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.